
1016_0_Product_Manual created: 11/19/09 Page 1

1016 - PhidgetCircularTouch

Programming Environment
Operating Systems: Windows 2000/XP/Vista, Windows CE, Linux, and Mac OS X

Programming Languages (APIs): VB6, VB.NET, C#.NET, C++, Flash 9, Flex, Java, LabVIEW,
Python, Max/MSP, and Cocoa.

Examples: Many example applications for all the operating systems and development
environments above are available for download at www.phidgets.com.

Product Features
Changes value when it is touched, detecting approximately 125 discrete positions.•	

Works through 1/8 inch of glass or plastic•	

Recognize both contact and proximity, and can be used as a slide-wheel or as an array of •	
buttons.

Plugs directly into your computer’s USB port.•	

1016_0_Product_Manual created: 11/19/09 Page 2

The kit contains:

A PhidgetCircularTouch board.•	

A custom USB cable•	

Connect the PhidgeCircularTouch board to the computer using the included custom USB 1.
cable.

1

Installing the hardware

1016_0_Product_Manual created: 11/19/09 Page 3

Double Click on the icon to activate
the Phidget Control Panel and make
sure that the Phidget Touch Rotation
is properly attached to your PC.

Double Click on 1. Phidget
Touch Rotation in the Phidget
Control Panel to bring up
InterfaceKit-full and check
that the box labelled Attached
contains the word True.

As you bring your finger closer 2.
to the board and touch the
board, tick marks will appear
in the Digital In boxes. The left
one shows “touch” and the
right one shows “proximity”.

Move your finger along the 3.
back side of the PhidgetCircularTouch and watch the numbers in the Analog box change.
The numbers are only significant when both Digital In boxes are “tick marked”.

Adjusting the input sensitivity with the sensitivity slider changes the number of discrete 4.
steps that will fire the on-sensor-change event.

Downloading and Installing the software
If you are using Windows 2000/XP/Vista
Go to www.phidgets.com >> Drivers

Download and run Phidget21.MSI

You should see the icon on the right hand corner of the Task Bar.

Testing the PhidgetCircularTouch Functionality

1 2

3

4

http://www.phidgets.com/drivers.php

1016_0_Product_Manual created: 11/19/09 Page 4

If you are using Mac OS X
Go to www.phidgets.com >> Drivers

Download Mac OS X Framework•	

Click on System Preferences >> Phidgets (under Other) to activate the Preference Pane. •	

Make sure that your Phidget is properly attached.•	

Double click on the attached Phidget to launch the Example.•	

If you are using Linux
Go to www.phidgets.com >> Drivers

Download Linux Source

Have a look at the readme file •	

Build Phidget21 •	

The most popular programming languages in Linux are C/C++ and Java.

Notes:

Many Linux systems are now built with unsupported third party drivers. It may be necessary
to uninstall these drivers for our libraries to work properly.

Phidget21 for Linux is a user-space library. Applications typically have to be run as root, or
udev/hotplug must be configured to give permissions when the Phidget is plugged in.

If you are using Windows Mobile/CE 5.0 or 6.0
Go to www.phidgets.com >> Drivers

Download x86 or ARMV4I, depending on the platform you are using. Mini-itx and ICOP
systems will be x86, and most mobile devices, including XScale based systems will run the
ARMV4I.

The CE libraries are distributed in .CAB format. Windows Mobile/CE is able to directly install
.CAB files.

The most popular languages are C/C++, .NET Compact Framework (VB.NET and C#). A
desktop version of Visual Studio can usually be configured to target your Windows Mobile
Platform, whether you are compiling to machine code or the .NET Compact Framework.

http://www.phidgets.com/drivers.php
http://www.phidgets.com/drivers.php
http://www.phidgets.com/drivers.php

1016_0_Product_Manual created: 11/19/09 Page 5

Programming a Phidget
Phidgets’ philosophy is that you do not have to be an electrical engineer in order to do projects
that use devices like sensors, motors, motor controllers, and interface boards. All you need
to know is how to program. We have developed a complete set of Application Programming
Interfaces (API) that are supported for Windows, Mac OS X, and Linux. When it comes to
languages, we support VB6, VB.NET, C#.NET, C, C++, Flash 9, Flex, Java, LabVIEW, Python,
Max/MSP, and Cocoa.

Architecture
We have designed our libraries to give you the maximum amount of freedom. We do not
impose our own programming model on you.

To achieve this goal we have implemented the libraries as a series of layers with the C API at
the core surrounded by other language wrappers.

Libraries
The lowest level library is the C API. The C API can be programmed against on Windows, CE,
OS X and Linux. With the C API, C/C++, you can write cross-platform code. For systems with
minimal resources (small computers), the C API may be the only choice.

The Java API is built into the C API Library. Java, by default is cross-platform - but your
particular platform may not support it (CE).

The .NET API also relies on the C API. Our default .NET API is for .NET 2.0 Framework, but
we also have .NET libraries for .NET 1.1 and .NET Compact Framework (CE).

The COM API relies on the C API. The COM API is programmed against when coding in VB6,
VBScript, Excel (VBA), Delphi and Labview.

The ActionScript 3.0 Library relies on a communication link with a PhidgetWebService (see
below). ActionScript 3.0 is used in Flex and Flash 9.

Programming Hints
Every Phidget has a unique serial number - this allows you to sort out which device is which •	
at runtime. Unlike USB devices which model themselves as a COM port, you don’t have
to worry about where in the USB bus you plug your Phidget in. If you have more than
one Phidget, even of the same type, their serial numbers enable you to sort them out at
runtime.

Each Phidget you have plugged in is controlled from your application using an object/handle •	
specific to that phidget. This link between the Phidget and the software object is created
when you call the .OPEN group of commands. This association will stay, even if the Phidget
is disconnected/reattached, until .CLOSE is called.

The Phidget APIs are designed to be used in an event-driven architecture. While it is •	
possible to poll them, we don’t recommend it. Please familiarize yourself with event
programming.

Networking Phidgets
The PhidgetWebService is an application written by Phidgets Inc. which acts as a network
proxy on a computer. The PhidgetWebService will allow other computers on the network
to communicate with the Phidgets connected to that computer. ALL of our APIs have the

1016_0_Product_Manual created: 11/19/09 Page 6

capability to communicate with Phidgets on another computer that has the PhidgetWebService
running.

The PhidgetWebService also makes it possible to communicate with other applications that
you wrote and that are connected to the PhidgetWebService, through the PhidgetDictionary
object.

Documentation
Programming Manual
The Phidget Programming Manual documents the Phidgets software programming model in
a language and device unspecific way, providing a general overview of the Phidgets API as a
whole.

Getting Started Guides
We have written Getting Started Guides for most of the languages that we support. If the
manual exists for the language you want to use, this is the first manual you want to read. The
Guides can be found under Programming and are listed under the appropriate language.

API documentation
We maintain API references for COM (Windows), C (Windows/Mac OSX/Linux), Action Script,
.Net and Java. These references document the API calls that are common to all Phidgets.
These API References can be found under Programming and are listed under the appropriate
language. To look at the API calls for a specific Phidget, check its Product Manual.

Code Samples
We have written sample programs to illustrate how the APIs are used.

Due to the large number of languages and devices we support, we cannot provide examples
in every language for every Phidget. Some of the examples are very minimal, and other
examples will have a full-featured GUI allowing all the functionality of the device to be explored.
Most developers start by modifying existing examples until they have an understanding of the
architecture.

Go to Programming to see if there are code samples written for your device. Find the
language you want to use and click on the magnifying glass besides “Code Sample”. You will get
a list of all the devices for which we wrote code samples in that language.

Support
Call the support desk at 1.403.282.7335 8:00 AM to 5:00 PM Mountain Time (US & •	
Canada) - GMT-07:00

E-mail support@phidgets.com•	

http://www.phidgets.com/documentation/Programming Manual.pdf
http://www.phidgets.com/programming_resources.php
http://www.phidgets.com/programming_resources.php
http://www.phidgets.com/programming_resources.php

1016_0_Product_Manual created: 11/19/09 Page 7

Technical Section
The PhidgetCircularTouch is actually a capacitive-charge sensor, detecting changes in the
capacitance between the on-board electrodes and the object making contact. The side of the
circuit board opposite the connector and components is the side intended for contact. The
internal sensor used for charge-detection is a Quantum Research Group QT510 Sensor.

Device Inputs
The PhidgetCircularTouch appears to the Phidget software libraries as an InterfaceKit.
Sliding a finger around the touch sensor varies the Analog Input 0 value from 0 to 1000 in
approximately 125 discrete steps. When the finger is removed, the final measured value is
retained. Two Digital Inputs are also utilized to convey additional information: Digital Input 0
appears True when contact is made with the electrodes on the Phidget, and Digital Input 1
appears True when a finger or contacting object comes in close proximity to the electrodes.
The two Digital Inputs are intended to be used as a quality measure, allowing the developer to
trust the Analog Input value only when both Digital Inputs are true.

Input Range Description

Analog Input 0 0 - 1000 Analog value representing touch position
Digital Input 0 True/False True indicates physical electrode contact
Digital Input 1 True/False True indicates proximity to electrodes

If it is desired to use the touch slider as an array of buttons, or a combination of an array of
buttons and a smaller slide-touch area, one must only interpret specific sub-ranges of sensor
values differently in software depending upon the intended use. If sub-ranges of values are to
be used as buttons, it is recommended that a small range of sensor values be left between
the sub-ranges where a null-response is observed.

Dielectric Separation
The PhidgetCircularTouch has been left without components on the contact side so that it may
be mounted behind a sheet of glass or plastic. The recommended thickness of separation
material is 1/8 inch. Silicon adhesive is recommended when attaching the Phidget to the
material; standing the PhidgetCircularTouch off or creating space between the separation
material and the Phidget can cause false-triggering to occur.

It should be noted that materials thicker than 1/8” may work, but will require a larger surface
area of contact to ensure proper triggering (i.e.: two fingers instead of one). Increasing the
surface area of the contacting object helps to increase the measurable capacitance at the
point of contact that further seperation causes to reduce, balancing these factors out.

1016_0_Product_Manual created: 11/19/09 Page 8

Functions
int InputCount() [get] : Constant = 2
Returns the number of digital inputs supported. Please refer to the Device Inputs section for
details on the abstractions used on the 1016.

bool InputState(int InputIndex) [get]
Returns the state of a particular digital input.

int SensorCount() [get] : Constant = 1
Returns the number of sensors (Analog Inputs) supported by this PhidgetInterfaceKit.
Intrepreted together with the digital inputs, this represents the positiion of the user’s finger on
the circular slider.

int SensorValue(int SensorIndex) [get]
Returns the sensed value of a particular Analog Input. Please refer to the Device Inputs
section for details on the abstractions used on the 1016.

double SensorChangeTrigger (int SensorIndex) [get,set]
Returns the change trigger for an analog input. This is the ammount that an inputs must
change between successive SensorChangeEvents. This is based on the 0-1000 range
provided by getSensorValue. This value is by default set to 10.

Events
OnInputChange(int InputIndex, bool State) [event]
An event that is issued when the state of a digital input changes.

OnSensorChange(int SensorIndex, int SensorValue), [event]
An event that is issued when the returned value from an Analog Input varies by more than the
SensorChangeTrigger property.

API (Software Technical)
We document API Calls specific to this product in this section. Functions common to all
Phidgets and functions not applicable to this device are not covered here. This section is
deliberately generic. For calling conventions under a specific language, refer to the associated
API manual. For exact values, please refer to the device specifications.

1016_0_Product_Manual created: 11/19/09 Page 9

Mechanical Drawing

Product History
Date Product Revision Comment
August 2005 DeviceVersion 100 Product Release
January 2006 DeviceVersion 101 Design migrated to Encore II Processor
January 2007 DeviceVersion 102 Bus Reset / Low Voltage Reset defined

1:1 scale

Device Specifications
Analog Input Update Rate 30 updates/second
Digital Input Update Rate 30 updates/second

Device Current Consumption 36mA max

Note: When printing the mechanical drawing, “Page Scaling” in the Print panel must be set
to “None” to avoid re-sizing the image.

	Product Features
	Installing the hardware
	Downloading and Installing the software
	If you are using Windows 2000/XP/Vista
	Testing the PhidgetCircularTouch Functionality
	If you are using Mac OS X
	If you are using Linux
	If you are using Windows Mobile/CE 5.0 or 6.0

	Programming a Phidget
	Architecture
	Libraries
	Programming Hints
	Networking Phidgets
	Documentation

	Technical Section
	Device Inputs
	Dielectric Separation

	API Section
	Functions
	Events

	Device Specifications
	Mechanical Drawing
	Product History

