
Product Manual
1046 - PhidgetBridge 4-Input

Phidgets 1046 - Product Manual

For Board Revision 0

© Phidgets Inc. 2011

Contents

5 Product Features

5 Programming Environment

5 Connection

6 Getting Started

6 Checking the Contents

6 Connecting all the pieces

6 Testing Using Windows 2000/XP/Vista/7

6 Downloading the Phidgets drivers

6 Running Phidgets Sample Program
7 Testing Using Mac OS X

8 If you are using Linux

8 If you are using Windows Mobile/CE 5.0 or 6.0

9 Programming a Phidget

9 Architecture

9 Libraries

9 Programming Hints

9 Networking Phidgets

10 Documentation

10 Programming Manual

10 Getting Started Guides

10 API Guides
10 Code Samples

10 API for the PhidgetBridge 4-input

10 Properties

11 Events

12 Technical Section

12 How to calibrate the bridge

12 Gain Setting vs Resolution

12 Connecting your strain gauge/load cell

12 Things to watch for

13 Changing the Data Rate

13	 Device	Specifications

13 Product History

13 Support

51046_0_Product_Manual - May 10, 2011 3:15 PM

Product Features

Interfaces	to	up	to	4	un-amplified	Wheatstone	bridges•	

Supports	specific	data	rates	(from	1	to	125	samples/sec)	•	

Supports gains from 1 - 128.•	

Software	configurable	amplification•	

Great interface for Load Cells, Strain Gauges, Pressure Sensors/Barometers, Magnetoresistive sensors •	
(Compasses)

Programming Environment
Operating Systems: Windows 2000/XP/Vista/7, Windows CE, Linux, and Mac OS X

Programming Languages (APIs): VB6, VB.NET, C#.NET, C++, Flash 9, Flex, Java, LabVIEW, Python, Max/MSP,
and Cocoa.

Examples: Many example applications for all the operating systems and development environments above are

available for download at www.phidgets.com >> Programming.

Connection
The board connects directly to a computer’s USB port.

61046_0_Product_Manual - May 10, 2011 3:15 PM

Connect the load cell to the PhidgetBridge - use 1.
bridge 0. We are using a 3133 - Micro Load Cell
(0-5kg)	-	CZL635.	Connect	the	red	wire	to	5V,	
the green wire to +, the white wire to -, and the
black wire to G.

If your Load Cell is not documented, refer to the
technical section of this manual for instructions
on how to connect it.

Connect the PhidgetBridge to your computer 2.
using the Mini-USB cable.

1
2

Getting Started

Checking the Contents

You should have received:

A PhidgetBridge 4-Inputs•	

A Mini-USB cable•	

Connecting all the pieces

Testing Using Windows 2000/XP/Vista/7
Downloading the Phidgets drivers
Make sure that you have the current version of the Phidget library installed on your PC. If you don’t, do the
following:

Go to www.phidgets.com >> Drivers

Download	and	run	Phidget21	Installer	(32-bit,	or	64-bit,	depending	on	your	PC)

You should see the icon on the right hand corner of the Task Bar.

Running Phidgets Sample Program

Double clicking on the icon loads the Phidget Control Panel; we will use this program to make sure that your
new Phidget works properly.

In order to test your new Phidget you will also
need:

A wheatstone bridge based sensor•	

The source code for the Bridge-full sample program can be found under C# by clicking on www.phidgets.com >>
Programming.

71046_0_Product_Manual - May 10, 2011 3:15 PM

Double Click on 1. PhidgetBridge 4-input in the Phidget Control
Panel to bring up Bridge-full and check that the box labelled
Attached contains the word True.

If you have connected your device to the same bridge as we did, 2.
select bridge 0.

Click to enable the bridge.3.

Click on the Start Calibration Button. Enter 0 for Value 1 (no 4.
weight on the load cell). Put a known weight on the load cell
and enter the number in Value 2 box. The calibration formula is
displayed in the formula box. If your sensor is not a load cell, you
can still use the Calibration functionality - you just need two known
values for your sensor.

Put a different weight on the load cell and the bridge value gets 5.
converted using the calibration formula.

You can use the slider to adjust the data rate from 8ms to 1000ms in 6.
increments of 8ms.

You can set the gain to 1, 8, 16, 32, 64, 128; in general a higher gain 7.
value gives you lower noise and higher resolution.

1

2

3

4

5

6

7

Double Click on the icon to activate the Phidget Control
Panel and make sure that the PhidgetBridge 4-input is
properly attached to your PC.

Testing Using Mac OS X
Click on System Preferences >> Phidgets (under Other) to activate the Preference Pane•	

Make sure that the PhidgetBridge 4-input is properly attached.•	

Double Click on Phidget PhidgetBridge 4-input in the Phidget Preference Pane to bring up the Bridge-full Sample program. •	
This program will function in a similar way as the Windows version.

81046_0_Product_Manual - May 10, 2011 3:15 PM

If you are using Linux
There are no sample programs written for Linux.

Go to www.phidgets.com >> Drivers

Download Linux Source

Have	a	look	at	the	readme	file	•	

Build Phidget21 •	

The most popular programming languages in Linux are C/C++ and Java.

Notes:

Many Linux systems are now built with unsupported third party drivers. It may be necessary to uninstall these
drivers for our libraries to work properly.

Phidget21 for Linux is a user-space library. Applications typically have to be run as root, or udev/hotplug must be
configured	to	give	permissions	when	the	Phidget	is	plugged	in.

If you are using Windows Mobile/CE 5.0 or 6.0
Go to www.phidgets.com >> Drivers

Download x86, ARMV4I or MIPSII, depending on the platform you are using. Mini-itx and ICOP systems will be x86,
and most mobile devices, including XScale based systems will run the ARMV4I.

The	CE	libraries	are	distributed	in	.CAB	format.		Windows	Mobile/CE	is	able	to	directly	install	.CAB	files.

The	most	popular	languages	are	C/C++,	.NET	Compact	Framework	(VB.NET	and	C#).		A	desktop	version	of	Visual	
Studio	can	usually	be	configured	to	target	your	Windows	Mobile	Platform,	whether	you	are	compiling	to	machine	
code or the .NET Compact Framework.

91046_0_Product_Manual - May 10, 2011 3:15 PM

Programming a Phidget

Phidgets’ philosophy is that you do not have to be an electrical engineer in order to do projects that use devices
like sensors, motors, motor controllers, and interface boards. All you need to know is how to program. We have
developed	a	complete	set	of	Application	Programming	Interfaces	(API)	that	are	supported	for	Windows,	Mac	OS	X,	
and Linux. When it comes to languages, we support VB6, VB.NET, C#.NET, C, C++, Flash 9, Flex, Java, LabVIEW,
Python, Max/MSP, and Cocoa.

Architecture
We have designed our libraries to give you the maximum amount of freedom. We do not impose our own
programming model on you.

To achieve this goal we have implemented the libraries as a series of layers with the C API at the core surrounded
by other language wrappers.

Libraries
The lowest level library is the C API. The C API can be programmed against on Windows, CE, OS X and Linux. With
the	C	API,	C/C++,	you	can	write	cross-platform	code.		For	systems	with	minimal	resources	(small	computers),	the	C	
API may be the only choice.

The Java API is built into the C API Library. Java, by default is cross-platform - but your particular platform may not
support	it	(CE).		

The .NET API also relies on the C API. Our default .NET API is for .NET 2.0 Framework, but we also have .NET
libraries	for	.NET	1.1	and	.NET	Compact	Framework	(CE).		

The	COM	API	relies	on	the	C	API.		The	COM	API	is	programmed	against	when	coding	in	VB6,	VBScript,	Excel	(VBA),	
Delphi and Labview.

The	ActionScript	3.0	Library	relies	on	a	communication	link	with	a	PhidgetWebService	(see	below).		ActionScript	3.0	
is used in Flex and Flash 9.

Programming Hints
Every Phidget has a unique serial number - this allows you to sort out which device is which at runtime. Unlike •	
USB devices which model themselves as a COM port, you don’t have to worry about where in the USB bus you
plug your Phidget in. If you have more than one Phidget, even of the same type, their serial numbers enable
you to sort them out at runtime.

Each	Phidget	you	have	plugged	in	is	controlled	from	your	application	using	an	object/handle	specific	to	that	•	
phidget. This link between the Phidget and the software object is created when you call the .OPEN group of
commands. This association will stay, even if the Phidget is disconnected/reattached, until .CLOSE is called.

For full performance, the Phidget APIs are designed to be used in an event driven architecture. Applications that •	
require receiving all the data streaming from the device will have to use event handlers, instead of polling.

Networking Phidgets
The PhidgetWebService is an application written by Phidgets Inc. which acts as a network proxy on a computer. The
PhidgetWebService will allow other computers on the network to communicate with the Phidgets connected to that
computer. ALL of our APIs have the capability to communicate with Phidgets on another computer that has the
PhidgetWebService running.

The PhidgetWebService also makes it possible to communicate with other applications that you wrote and that are
connected to the PhidgetWebService, through the PhidgetDictionary object.

101046_0_Product_Manual - May 10, 2011 3:15 PM

Documentation
Programming Manual
The Phidget Programming Manual documents the Phidgets software programming model in a language and device
unspecific	way,	providing	a	general	overview	of	the	Phidgets	API	as	a	whole.		You	can	find	the	manual	at	www.
phidgets.com >> Programming.

Getting Started Guides
We have written Getting Started Guides for most of the languages that we support. If the manual exists for the
language	you	want	to	use,	this	is	the	first	manual	you	want	to		read.	The	Guides	can	be	found	at	www.phidgets.com
>> Programming, and are listed under the appropriate language.

API Guides
We	maintain	API	references	for	COM	(Windows),	C	(Windows/Mac	OSX/Linux),	Action	Script,	.Net	and	Java.	These	
references document the API calls that are common to all Phidgets. These API References can be found under www.
phidgets.com >> Programming	and	are	listed	under	the	appropriate	language.	To	look	at	the	API	calls	for	a	specific	
Phidget, check its Product Manual.

Code Samples
We have written sample programs to illustrate how the APIs are used.

Due to the large number of languages and devices we support, we cannot provide examples in every language for
every Phidget. Some of the examples are very minimal, and other examples will have a full-featured GUI allowing
all the functionality of the device to be explored. Most developers start by modifying existing examples until they
have an understanding of the architecture.

Go to www.phidgets.com >> Programming to see if there are code samples written for your device. Find the
language you want to use and click on the magnifying glass besides “Code Sample”. You will get a list of all the
devices for which we wrote code samples in that language.

API for the PhidgetBridge 4-input
We	document	API	Calls	specific	to	this	product	in	this	section.	Functions	common	to	all	Phidgets	and	functions	not	
applicable to this device are not covered here. This section is deliberately generic. For calling conventions under a
specific	language,	refer	to	the	associated	API	manual.	For	exact	values,	refer	to	the	device	specifications.

Properties
int InputCount [get] : Constant = 4

Returns the number of bridges supported by this PhidgetBridge.

double BridgeValue(int index) [get]

Returns the value of the selected input, in mV/V. If the input is not enabled, this will throw an EPHIDGET_
UNKNOWNVAL exception. If the bridge is saturated, this will be equal to BridgeMax or BridgeMin and an error event
will	be	fired	-	in	this	case,	gain	should	be	reduced.

double BridgeMax(int index) [get]

Returns the maximum value that the selected Bridge can measure, in mV/V. This value will depend on the selected gain.
At a gain of 1, BridgeMax == 1000mV/V.

double BridgeMin(int index) [get]

Returns the minimum value that the selected Bridge can measure, in mV/V. This value will depend on the selected gain. At
a gain of 1, BridgeMin == -1000mV/V.

boolean Enabled(int index) [get,set]

Gets / Sets the enabled state of a Bridge. This applies power between +5v and Ground and starts measuring the differential
on the +/- pins. By default, all Bridges are disabled, and need to be explicitly enabled on startup.

Gains Gain(int index) [get,set]

111046_0_Product_Manual - May 10, 2011 3:15 PM

Gets / Sets the gain for a selected bridge. Supported gains are 1, 8, 16, 32, 64 and 128. Note that increasing the gains will
reduce the measurable voltage difference by the gain factor, with +-1000mV/V being the maximum, with no gain.

int DataRate [get,set]

Gets / Sets the data rate, in ms. Data rate applies to all 4 bridges simultaneously. Setting a slower data rate will reduce
noise at the cost of sample time. Also note that each bridge is being sampled only 1/4 of the time - this is probably ok for
very stable signals, but for changing signals, it’s may be best to set a higher sampling rate and do averaging in software.

Data rate must be a multiple of 8ms. Trying to set something between multiples of 8 will cause an EPHIDGET_
INVALIDARG exception to be thrown.

int DataRateMax [get] : Constant = 8

Gets the maximum supported data rate, in ms.

int DataRateMin [get] : Constant = 1000

Gets the minimum supported data rate, in ms.

Events
OnBridgeData(int index, double value) [event]

An	event	that	is	issued	at	the	specified	DataRate,	for	each	enabled	bridge.	Value	is	the	bridgeValue,	in	mV/V.

OnError(int ErrorCode, String ErrorDescription)

The PhidgetBridge will throw error events under certain circumstances:

ErrorCode = EEPHIDGET_OUTOFRANGE - A bridge input has gone out of range. This indicates either an
overrange or underrange condition. If possible, gain should be reduced.

See	the	ErrorDescription	string	for	specific	error	details.

121046_0_Product_Manual - May 10, 2011 3:15 PM

Technical Section

How to calibrate the bridge
We have observed a 1.5% difference between gain=1 and gain=8. This may require that each system
(PhidgetBridge	+	sensors)	are	calibrated	as	a	whole.		For	maximum	accuracy,	decide	on	and	keep	with	a	chosen	
gain before calibrating the system.

Expensive	sensors	will	ship	with	a	certificate	of	calibration	specifying,	often	in	mv/V,	how	the	sensor	responds	to	
stimulus. Less expensive will have to be calibrated, which requires having at least two points where you know
accurately what is being measured. In the case of weight measurement, this would be a known force or weight.
Record the output from the PhidgetBridge at one known point, and at a second known point. It helps if the two
values are reasonably far apart. Use the values to make a linear equation to convert the PhidgetBridge output in
mV/V	(called	X)	to	the	appropriate	unit	you	are	measuring	(called	Y).		Two	calibration	coefficients	(a,b)	set	the	slope	
and	offset	for	the	calibration:		(Y	=	aX	+	b).		It’s	possible	to	use	more	than	two	points,	if	available.		

The	C#	Bridge-full	example	shows	how	to	do	a	2-point	calibration	and	apply	the	coefficients	programmatically.		

Gain Setting vs Resolution
We report the measured voltage in a ratiometric unit known as mv/V. This is how the maximum range of sensors
that	use	strain	gauges	is	usually	specified.	mV/V	is	the	output	value	in	mV	of	the	measured	sensor,	scaled	for	a	1V	
sensor supply voltage. This value will correspond to the physical quantity that the sensor is measuring, regardless of
the actual voltage supplied to the sensor.

Gain Resolution Range

1 119nV/V +-1000mV/V

8 14.9nV/V +-125mV/V

16 7.45nV/V +-62.5mV/V

32 3.72nV/V +-31.25mV/V

64 1.86nV/V +-15.625mV/V

128 0.93nV/V +-7.8125mV/V

When choosing the Gain setting, it’s best to use the highest gain possible that can still measure the full range of
your sensor. For an individual unit, you can apply the maximum stimulus to the sensor, and ensure the BridgeValue
reported is well within the range for the Gain setting you have chosen. If many units are being deployed, it’s best to
consult the data sheet for the strain gauge and look for maximum offset.

Some wheatstone bridges - most often those produced from silicon and used in pressure sensors, will have a very
wide offset, and large manufacturing variation in the offset. This will restrict the gain to lower settings, particularly
if the application must support a number of deployed systems with the expected variation. Fortunately, the very
high precision electronics used in the PhidgetBridge means that in many application, higher gain is not necessary to
get adequate accuracy and resolution.

Connecting your strain gauge/load cell
If no documentation is available for your strain gauge, it’s possible to use a multimeter to determine how to connect
it, provided there are no electronics in the sensor. First, measure resistance between the 4 wires. There are 6
combinations - two combinations will have a resistance 20-40% higher than the other four. Choose one of these
high-resistance combinations, and wire it into 5V and G on the PhidgetBridge. Connect the other two wires into +/-.
Apply	a	load	-	if	the	mV/V	responds	in	the	opposite	way	to	your	expectations,	flip	the	+/-	wires.

Things to watch for
The PhidgetBridge is designed to measure voltages as a ratio of the supply voltage - it’s not practical to make
measurements of absolute voltages with this product.

131046_0_Product_Manual - May 10, 2011 3:15 PM

For maximum accuracy, all wires from the PhidgetBridge to the sensor should be the same length and thickness.
Changes in temperature will change the resistance of the wires - if they are all the same, the errors will cancel out.

Changing the Data Rate
Using	a	slower	sampling	rate	will	reduce	the	noise	in	the	measurements	dramatically.		The	noise	figures	are	specific	
to individual applications and sensors. The lowest noise level achievable is 5nV/V RMS.

Other
Each bridge input can be powered down, reducing power consumption with Bridge-Sensors, and useful for reducing
heating of sensors, which can introduce errors.

Device Specifications
Characteristic Value

USB Voltage 4.5 - 5.25VDC

USB Current 500mA

USB Quiescent Current 35mA

Total Current available to Bridge Outputs 465mA

Recommended wire size 16 - 26AWG

Differential Voltage resolution per channel 24 bits

Data	Rates	(affects	all	channels) 8ms to 1000ms in 8ms increments

Gain	Settings	(affects	all	channels) 1, 8, 16, 24, 64, 128

Input	Current	(Max) +-3nA

Operational Input Voltage Range GND + 0.25V to 5V Supply - 0.25V

Operating Temperature 0 - 70°C

Support
Call	the	support	desk	at	1.403.282.7335	9:00	AM	to	5:00	PM	Mountain	Time	(US	&	Canada)	-	GMT-07:00

or

E-mail us at: support@phidgets.com

Product History
Date Board Revision Device Version Comment
May 2011 0 100 Product Release

	Product Features
	Programming Environment
	Connection

	Getting Started
	Checking the Contents
	Connecting all the pieces
	Testing Using Windows 2000/XP/Vista/7
	Downloading the Phidgets drivers
	Running Phidgets Sample Program

	Testing Using Mac OS X
	If you are using Linux
	If you are using Windows Mobile/CE 5.0 or 6.0

	Programming a Phidget
	Architecture
	Libraries
	Programming Hints
	Networking Phidgets
	Documentation
	Programming Manual
	Getting Started Guides
	API Guides

	Code Samples
	API for the PhidgetBridge 4-input
	Properties
	Events

	Technical Section
	How to calibrate the bridge
	Gain Setting vs Resolution
	Connecting your strain gauge/load cell
	Things to watch for
	Changing the Data Rate
	Device Specifications

	Product History
	Support

