
Product Manual
1054 - PhidgetFrequencyCounter

Phidgets 1054 - Product Manual

For Board Revision 0

© Phidgets Inc. 2011

Contents

5 Product Features

5 Programming Environment

5 Connection

6 Getting Started

6 Checking the Contents

6 Connecting all the pieces

6 Testing Using Windows 2000/XP/Vista/7

6 Downloading the Phidgets drivers

6 Running Phidgets Sample Program
7 Testing Using Mac OS X

8 If you are using Linux

8 If you are using Windows Mobile/CE 5.0 or 6.0

9 Programming a Phidget

9 Architecture

9 Libraries

9 Programming Hints

9 Networking Phidgets

10 Documentation

10 Programming Manual

10 Getting Started Guides

10 API Guides
10 Code Samples

10 API for the PhidgetFrequencyCounter

10 Enums

10 Properties

11 Functions

11 Events

12 Technical Section

12 Logic-Level Frequencies

12 Zero-Centered Frequencies

12 Differential Inputs

12 Output Voltage

13	 Device	Specifications

13 Product History

13 Support

51054_0_Product_Manual - May 20, 2011 10:50 AM

Product Features

The 1054 Frequency Counter is a device designed to count events from an analog signal over time and calculate a
frequency from it. The product can count a logic level or signal centered around zero volts. Signals with a different
ground can be counted, provided they are within the common mode range (+-10V). It can power small devices,
such	as	Hall	Effect	or	flow	rate	sensors,	tachometers,	and	other	sensors.	

Allows you to measure the frequency of an analog or digital signal. •	

Can	power	small	isolated	devices	such	as	Hall	Effect	or	flow	rate	sensors,	tachometers,	...•	

Can measure frequencies from 0 to 1 MHz. •	

Provides a 5VDC power supply for your connected devices. •	

Can measure zero-centered signals with a minimum amplitude of 110mV peak-to-peak•	

Can measure logic-levels (3.3V and 5V) with a maximum difference in the ground voltage of +10/-6V•	

Connects directly to a computer’s USB port.•	

Programming Environment
Operating Systems: Windows 2000/XP/Vista/7, Windows CE, Linux, and Mac OS X

Programming Languages (APIs): VB6, VB.NET, C#.NET, C++, Flash 9, Flex, Java, LabVIEW, Python, Max/MSP,
and Cocoa.

Examples: Many example applications for all the operating systems and development environments above are

available for download at www.phidgets.com >> Programming.

Connection
The board connects directly to a computer’s USB port.

61054_0_Product_Manual - May 20, 2011 10:50 AM

Connect your sensor to the 1.
PhidgetFrequencyCounter channel
0. We are using a Flow Meter that
requires an external +12V power
supply. The ground of the power
supply, sensor and 1054 are all
connected together. If your sensor
requires +5V, it can be powered directly
by the 1054.

Connect the PhidgetFrequencyCounter 2.
to your computer using the Mini-USB
cable.

1
2

Getting Started

Checking the Contents
You should have received:

A PhidgetFrequencyCounter•	

A Mini-USB cable•	

Connecting all the pieces

Testing Using Windows 2000/XP/Vista/7

Downloading the Phidgets drivers
Make sure that you have the current version of the Phidget library installed on your PC. If you don’t, do the
following:

Go to www.phidgets.com >> Drivers

Download and run Phidget21 Installer (32-bit, or 64-bit, depending on your PC)

You should see the icon on the right hand corner of the Task Bar.

Running Phidgets Sample Program

Double clicking on the icon loads the Phidget Control Panel; we will use this program to make sure that your
new Phidget works properly.

In order to test your new Phidget you will also
need:

A	Frequency	producing	device	such	as	a	flow	meter	or	•	
tachometer

The source code for the FrequencyCounter-full sample program can be found under C# by clicking on
www.phidgets.com >> Programming.

71054_0_Product_Manual - May 20, 2011 10:50 AM

Double Click on 1. PhidgetFrequencyCounter in the
Phidget Control Panel to bring up FrequencyCounter-
full and check that the box labelled Attached contains
the word True.

Select channel 0.2.

Click in the box to enable the device.3.

Select Logic Level or Zero Crossing, depending on your 4.
sensor. See the Technical Section for help.

The	Timeout	default	of	1000	ms	is	fine	for	most	5.
applications.

Count Events shows the number of pulses in the last 6.
measurement interval.

Frequency is calculated from the number of pulses in 7.
the last measurement interval.

Total count is the total number of pulses counted since 8.
the application started or the 1054 reset.

Total Time is the elapsed time since the application 9.
started or the 1054 reset.

1

2

3 4

5

6

7

9

8

Double Click on the icon to activate the
Phidget Control Panel and make sure that the
PhidgetFrequencyCounter is properly attached to
your PC.

Testing Using Mac OS X

Click on System Preferences >> Phidgets (under Other) to activate the Preference Pane•	

Make sure that the PHidgetFrequencyCounter is properly attached.•	

Double Click on Phidget PhidgetFrequrncyCounter in the Phidget Preference Pane to bring up the •	
FrequencyCounter-full Sample program. This program will function in a similar way as the Windows version.

81054_0_Product_Manual - May 20, 2011 10:50 AM

If you are using Linux
There are no sample programs written for Linux.

Go to www.phidgets.com >> Drivers

Download Linux Source

Have	a	look	at	the	readme	file	•	

Build Phidget21 •	

There is no Control Panel written for Linux, but there are C/C++ and Java code samples available for all Phidgets
which	will	compile	and	run	on	Linux	without	modification.

Notes:

Many Linux systems are now built with unsupported third party drivers. It may be necessary to uninstall these
drivers for our libraries to work properly.

Phidget21 for Linux is a user-space library. Applications typically have to be run as root, or udev/hotplug must be
configured	to	give	permissions	when	the	Phidget	is	plugged	in.

If you are using Windows Mobile/CE 5.0 or 6.0
Go to www.phidgets.com >> Drivers

Download x86, ARMV4I or MIPSII, depending on the platform you are using. Mini-itx and ICOP systems will be x86,
and most mobile devices, including XScale based systems will run the ARMV4I.

The	CE	libraries	are	distributed	in	.CAB	format.		Windows	Mobile/CE	is	able	to	directly	install	.CAB	files.

The most popular languages are C/C++, .NET Compact Framework (VB.NET and C#). A desktop version of Visual
Studio	can	usually	be	configured	to	target	your	Windows	Mobile	Platform,	whether	you	are	compiling	to	machine	
code or the .NET Compact Framework.

91054_0_Product_Manual - May 20, 2011 10:50 AM

Programming a Phidget

Phidgets’ philosophy is that you do not have to be an electrical engineer in order to do projects that use devices
like sensors, motors, motor controllers, and interface boards. All you need to know is how to program. We have
developed a complete set of Application Programming Interfaces (API) that are supported for Windows, Mac OS X,
and Linux. When it comes to languages, we support VB6, VB.NET, C#.NET, C, C++, Flash 9, Flex, Java, LabVIEW,
Python, Max/MSP, and Cocoa.

Architecture
We have designed our libraries to give you the maximum amount of freedom. We do not impose our own
programming model on you.

To achieve this goal we have implemented the libraries as a series of layers with the C API at the core surrounded
by other language wrappers.

Libraries
The lowest level library is the C API. The C API can be programmed against on Windows, CE, OS X and Linux. With
the C API, C/C++, you can write cross-platform code. For systems with minimal resources (small computers), the C
API may be the only choice.

The Java API is built into the C API Library. Java, by default is cross-platform - but your particular platform may not
support it (CE).

The .NET API also relies on the C API. Our default .NET API is for .NET 2.0 Framework, but we also have .NET
libraries for .NET 1.1 and .NET Compact Framework (CE).

The COM API relies on the C API. The COM API is programmed against when coding in VB6, VBScript, Excel (VBA),
Delphi and Labview.

The ActionScript 3.0 Library relies on a communication link with a PhidgetWebService (see below). ActionScript 3.0
is used in Flex and Flash 9.

Programming Hints

Every Phidget has a unique serial number - this allows you to sort out which device is which at runtime. Unlike •	
USB devices which model themselves as a COM port, you don’t have to worry about where in the USB bus you
plug your Phidget in. If you have more than one Phidget, even of the same type, their serial numbers enable
you to sort them out at runtime.

Each	Phidget	you	have	plugged	in	is	controlled	from	your	application	using	an	object/handle	specific	to	that	•	
phidget. This link between the Phidget and the software object is created when you call the .OPEN group of
commands. This association will stay, even if the Phidget is disconnected/reattached, until .CLOSE is called.

For full performance, the Phidget APIs are designed to be used in an event driven architecture. Applications that •	
require receiving all the data streaming from the device will have to use event handlers, instead of polling.

Networking Phidgets
The PhidgetWebService is an application written by Phidgets Inc. which acts as a network proxy on a computer. The
PhidgetWebService will allow other computers on the network to communicate with the Phidgets connected to that
computer. ALL of our APIs have the capability to communicate with Phidgets on another computer that has the
PhidgetWebService running.

The PhidgetWebService also makes it possible to communicate with other applications that you wrote and that are
connected to the PhidgetWebService, through the PhidgetDictionary object.

101054_0_Product_Manual - May 20, 2011 10:50 AM

Documentation

Programming Manual
The Phidget Programming Manual documents the Phidgets software programming model in a language and device
unspecific	way,	providing	a	general	overview	of	the	Phidgets	API	as	a	whole.		You	can	find	the	manual	at	www.
phidgets.com >> Programming.

Getting Started Guides
We have written Getting Started Guides for most of the languages that we support. If the manual exists for the
language	you	want	to	use,	this	is	the	first	manual	you	want	to		read.	The	Guides	can	be	found	at	www.phidgets.com
>> Programming, and are listed under the appropriate language.

API Guides
We maintain API references for COM (Windows), C (Windows/Mac OSX/Linux), Action Script, .Net and Java. These
references document the API calls that are common to all Phidgets. These API References can be found under www.
phidgets.com >> Programming	and	are	listed	under	the	appropriate	language.	To	look	at	the	API	calls	for	a	specific	
Phidget, check its Product Manual.

Code Samples
We have written sample programs to illustrate how the APIs are used.

Due to the large number of languages and devices we support, we cannot provide examples in every language for
every Phidget. Some of the examples are very minimal, and other examples will have a full-featured GUI allowing
all the functionality of the device to be explored. Most developers start by modifying existing examples until they
have an understanding of the architecture.

Go to www.phidgets.com >> Programming to see if there are code samples written for your device. Find the
language you want to use and click on the magnifying glass besides “Code Sample”. You will get a list of all the
devices for which we wrote code samples in that language.

API for the PhidgetFrequencyCounter

We	document	API	Calls	specific	to	this	product	in	this	section.	Functions	common	to	all	Phidgets	and	functions	not	
applicable to this device are not covered here. This section is deliberately generic. For calling conventions under a
specific	language,	refer	to	the	associated	API	manual.	For	exact	values,	refer	to	the	device	specifications.

Enums
enum {

 ZERO_CROSSING = 1,

 LOGIC_LEVEL

} FilterType

Determines the signal type that the PhidgetFrequencyCounter responds to.

Properties
double Frequency(int ChannelIndex) [get]

Gets	the	last	calculated	frequency	on	the	specified	channel,	in	Hz.	This	function	will	return	0	if	The	Timeout	
value elapses without detecting a signal. Frequency is recalculated up to 31.25 times a second, depending on
the pulse rate.

111054_0_Product_Manual - May 20, 2011 10:50 AM

int64 TotalCount(int ChannelIndex) [get]

Gets	the	total	number	of	pulses	detected	on	the	specified	channel	since	the	Phidget	was	opened,	or	since	the	
last reset.

int64 TotalTime(int ChannelIndex) [get]

Gets the total elapsed time since Phidget was opened, or since the last reset, in microseconds. This property
complements the TotalCount property.

int Timeout[get,set]

Gets or set the Timeout value, in microseconds. This value is used to set the time to wait without detecting a
signal before reporting 0 Hz. The valid range in 0.1 - 100 seconds (100,000 - 100,000,000 microseconds). 1/
Timeout represents the lowest frequency that will be measurable.

int Filter(int ChannelIndex, FilterType filter) [get, set]

Gets	or	set	the	channel	filter	mode.	This	controls	the	type	of	signal	that	the	frequency	counter	will	respond	to	-	
either a zero-centered signal, or a logic level signal.

bool Enabled(int ChannelIndex) [get, set]

Gets	or	sets	the	enabled	state	on	the	specified	channel.	When	a	channel	is	disabled,	it	will	no	longer	register	
counts. TotalTime and TotalCount properties will not be incremented until the channel is re-enabled.

Functions
void reset(int ChannelIndex)

Resets	the	TotalCount	and	TotalTime	counters	to	0	for	the	specified	channel.		For	best	precision/reliability,	this	
should be called when the channel is disabled.

Events
Count(int ChannelIndex, int time, int counts) [event]

An	event	that	is	issued	whenever	some	counts	have	been	detected.	This	event	will	fire	at	up	to	31.25	times	a	
second, depending on the pulse rate. The time is in microseconds and represents the amount of time in which
the number of counts occurred. This event can be used to calculate frequency independently of the phidget21
library frequency implementation.

This	event	will	fire	with	a	count	of	0	once,	after	the	Timeout	time	has	elapsed	with	no	counts	for	a	channel,	to	
indicate 0Hz.

121054_0_Product_Manual - May 20, 2011 10:50 AM

Technical Section

The PhidgetFrequencyCounter contains two channels to sense two different inputs. Each channel has two different
circuits to sense for logic level-frequencies or zero-centered frequencies. The measurable frequency is accurate
to 0.25% up to 1MHz. The Frequency Counter may measure frequencies past 1 Mhz, but the input voltage
specifications	will	not	hold.

The PhidgetFrequencyCounter can measure frequencies down to ~ 0.01Hz. However the response time of these
measurements is directly related to the frequency, thus it could take 1 or 2 periods(100-200s) to detect the input
frequency.

Logic-Level Frequencies
The logic-level sensing circuit has a hysteresis range from 0.9V to 2.4V. This will allow the circuit to count both
3.3V and 5V logic levels. In addition to logic-level signals, this will also accept the pulses from sensors with open
collector outputs.

When the input signals are either 3.3V or 5V, the maximum sensed frequency is 1.5Mhz.

Most digital sensors that are powered from a signal positive power supply will output a logic-level frequency.

Zero-Centered Frequencies
The zero-centered sensing circuit can be used for input signals where you want to count as it crosses zero volts.
A	hysteresis	of	30mVpp	filters	noise.		At	maximum	frequency	(1Mhz),	a	signal	of	400mVPP	is	required	for	reliable	
counting.

A common application that uses a zero centered frequency output is a simple magnetic tachometer, which produces
a sine wave around 0 volts.

Differential Inputs
The PhidgetFrequencyCounter uses differential inputs - that is, the voltage being compared is the difference
between the (+) and (-) inputs. If your application has a slightly different ground from your USB ground, the
common mode rejection in the 1054 will handle small differences in ground.

For many applications, the signal being measured is single ended - that is, your sensor outputs only one signal, and
you can directly connect the ground of the sensor to the ground of the 1054. In this case, ensure the (-) input is
tied to ground. Never allow either input to be left unconnected.

Output Voltage
USB Voltage is passed directly to the +5V terminal on the green blocks.

131054_0_Product_Manual - May 20, 2011 10:50 AM

Device Specifications
Characteristic Value

Number of channels 2

Operating Temperature 0 - 70°C

USB Voltage Range 4.75 - 5.25V

USB Current 42mA

Max Output Current (using +5V from terminal block) 450mA

Input Impedance 332 KOhm / 30pF

Frequency Error 0.25%

Maximum Input Frequency 1MHZ

Common mode input range vs. GND -6.25 to +10.25V

Maximum Input Voltage (measured to ground) ±20V

Zero Centered Input Hysteresis Band ±30mV

Minimum Input Voltage @ 1Mhz, Zero-Centered Input 400mVpp

Logic Input, Logic Level 0 voltage 0.8V

Logic Input, Logic Level 1 voltage 3V

Product History
Date Board Revision Device Version Comment
May 2011 0 100 Product Release

Support
Call the support desk at 1.403.282.7335 9:00 AM to 5:00 PM Mountain Time (US & Canada) - GMT-07:00

or

E-mail us at: support@phidgets.com

	Product Features
	Programming Environment
	Connection

	Getting Started
	Checking the Contents
	Connecting all the pieces
	Testing Using Windows 2000/XP/Vista/7
	Downloading the Phidgets drivers
	Running Phidgets Sample Program

	Testing Using Mac OS X
	If you are using Linux
	If you are using Windows Mobile/CE 5.0 or 6.0

	Programming a Phidget
	Architecture
	Libraries
	Programming Hints
	Networking Phidgets
	Documentation
	Programming Manual
	Getting Started Guides
	API Guides

	Code Samples
	API for the PhidgetFrequencyCounter
	Enums
	Properties
	Functions
	Events

	Technical Section
	Logic-Level Frequencies
	Zero-Centered Frequencies
	Differential Inputs
	Output Voltage
	Device Specifications

	Product History
	Support

