
Product Manual
1062 - PhidgetStepper Unipolar 4-Motor

Phidgets 1062 - Product Manual

For Board Revision 0

© Phidgets Inc. 2009

Contents

5	Product Features

5	 Programming Environment

5	 Connection

6	Getting Started

6	 Checking the Contents

6	 Connecting all the pieces

6	 Testing Using Windows 2000/XP/Vista

6	 Downloading the Phidgets drivers

6	 Running Phidgets Sample Program
7	 Testing Using Mac OS X

8	 If you are using Linux

8	 If you are using Windows Mobile/CE 5.0 or 6.0

9	Programming a Phidget

9	 Architecture

9	 Libraries

9	 Programming Hints

9	 Networking Phidgets

10	 Documentation

10	 Programming Manual

10	 Getting Started Guides

10	 API Guides
10	 Code Samples

10	 API for the PhidgetStepper Unipolar 4-Motor

10	 Functions

12	 Events

13	 Technical Section

13	 Introduction to Stepper Motors

13	 How to connect your Stepper to the 1062

15	 Controlling Steppers - Open and Closed Loop
16	 Stepping Mechanism

16	 Continuous Rotation

16	 Disabling the PhidgetStepper Unipolar

16	 Starting the motor

17	 Mechanical Drawing

17	 Device Specifications

18	 Product History

18	 Support

51062_0_Product_Manual - January 11, 2010 3:03 PM

Product Features

The PhidgetStepper Unipolar 4-Motor allows you to control the position, velocity, and acceleration of up to 4 •	
unipolar stepper motors.

The 1062 can be used in applications that require precise positioning and continuous rotation, at low cost. •	

Requires an external 5 to 12VDC power supply. •	

Note: Make sure that power supply you are using matches your motor specifications. Giving a 5V stepper a 12V
supply would cause the motor to run a 6 times higher power than it is rated for, and would likely destroy it.

Programming Environment
Operating Systems: Windows 2000/XP/Vista/7, Windows CE, Linux, and Mac OS X

Programming Languages (APIs): VB6, VB.NET, C#.NET, C++, Flash 9, Flex, Java, LabVIEW, Python, Max/MSP,
and Cocoa.

Examples: Many example applications for all the operating systems and development environments above are

available for download at www.phidgets.com >> Programming.

Connection
The board connects directly to a computer’s USB port.

61062_0_Product_Manual - January 11, 2010 3:03 PM

Connect the motor to the PhidgetStepper 1.	
board. If you are having difficulty connecting 	
your motor, refer to the Technical Section in
this manual.

Connect the power supply to the board using 2.	
the barrel connector.

Power supplies with higher current (more 3.	
than 2.5 Amps) should be wired directly to
the terminal block.

Connect the PhidgetMotorControl board to 4.	
your PC using the USB cable.

1

3

2

4

Getting Started

Checking the Contents

In order to test your new Phidget you will also
need:

 A 5 to 12V DC Power Supply (make sure the power supply does •	
not exceed your motor voltage ratings.)

A stepper motor (5, 6, or 8 wire)•	

You should have received:

A PhidgetStepper Unipolar 4-Motor•	

A USB Cable•	

Connecting all the pieces

Testing Using Windows 2000/XP/Vista
Downloading the Phidgets drivers
Make sure that you have the current version of the Phidget library installed on your PC. If you don’t, do the
following:

Go to www.phidgets.com >> Drivers

Download and run Phidget21 Installer (32-bit, or 64-bit, depending on your PC)

You should see the icon on the right hand corner of the Task Bar.

Running Phidgets Sample Program

Double clicking on the icon loads the Phidget Control Panel; we will use this program to make sure that your
new Phidget works properly.

The source code for the Stepper-Full sample program can be found under C# by clicking on Phidget.com >
Programming.

71062_0_Product_Manual - January 11, 2010 3:03 PM

Double Click on the icon to activate the
Phidget Control Panel and make sure that the
Phidget Unipolar Stepper Controller 4-motor
is properly attached to your PC.

Double Click on 1.	 Phidget Unipolar Stepper Controller 4-motor
in the Phidget Control Panel to bring up Stepper-full and check that
the box labelled Attached contains the word True.

Select the connected motor. If you have connected your motor at 2.	
the same place as the one in the picture on page 3, if should be at
position 2.

Check the Engaged box to power up the motor.3.	

Move the Target Position slider to the right or the left. The target 4.	
motor position will be displayed in the Position Target box and the
motor will start turning until the Actual position is the same as the
target.

Use the Velocity Limit slider to set the maximum velocity. The 5.	
motor will accelerate until the Actual velocity is equal to the
Velocity Limit.

Use the Acceleration slider to increase or decrease the acceleration.6.	

When the motor has reached the position target, a tick mark will 7.	
appear in the Stopped box.

When the motor is stopped, you can reset the current motor 8.	
Position by using the Current Position slider.

2

1

3

4

5

6

8

7

Testing Using Mac OS X
Click on System Preferences >> Phidgets (under Other) to activate the Preference Pane•	

Make sure that the •	 Phidget Unipolar Stepper Controller 4-motor is properly attached.

Double Click on •	 Phidget Unipolar Stepper Controller 4-motor in the Phidget Preference Pane to bring up
the Stepper-full example. This example will function in a similar way as the Windows version, but note that it
does not include an Advanced Sensor Display.

81062_0_Product_Manual - January 11, 2010 3:03 PM

If you are using Linux
There are no sample programs written for Linux.

Go to www.phidgets.com >> Drivers

Download Linux Source

Have a look at the readme file •	

Build Phidget21 •	

The most popular programming languages in Linux are C/C++ and Java.

Notes:

Many Linux systems are now built with unsupported third party drivers. It may be necessary to uninstall these
drivers for our libraries to work properly.

Phidget21 for Linux is a user-space library. Applications typically have to be run as root, or udev/hotplug must be
configured to give permissions when the Phidget is plugged in.

If you are using Windows Mobile/CE 5.0 or 6.0
Go to www.phidgets.com >> Drivers

Download x86, ARMV4I or MIPSII, depending on the platform you are using. Mini-itx and ICOP systems will be x86,
and most mobile devices, including XScale based systems will run the ARMV4I.

The CE libraries are distributed in .CAB format. Windows Mobile/CE is able to directly install .CAB files.

The most popular languages are C/C++, .NET Compact Framework (VB.NET and C#). A desktop version of Visual
Studio can usually be configured to target your Windows Mobile Platform, whether you are compiling to machine
code or the .NET Compact Framework.

91062_0_Product_Manual - January 11, 2010 3:03 PM

Programming a Phidget

Phidgets’ philosophy is that you do not have to be an electrical engineer in order to do projects that use devices
like sensors, motors, motor controllers, and interface boards. All you need to know is how to program. We have
developed a complete set of Application Programming Interfaces (API) that are supported for Windows, Mac OS X,
and Linux. When it comes to languages, we support VB6, VB.NET, C#.NET, C, C++, Flash 9, Flex, Java, LabVIEW,
Python, Max/MSP, and Cocoa.

Architecture
We have designed our libraries to give you the maximum amount of freedom. We do not impose our own
programming model on you.

To achieve this goal we have implemented the libraries as a series of layers with the C API at the core surrounded
by other language wrappers.

Libraries
The lowest level library is the C API. The C API can be programmed against on Windows, CE, OS X and Linux. With
the C API, C/C++, you can write cross-platform code. For systems with minimal resources (small computers), the C
API may be the only choice.

The Java API is built into the C API Library. Java, by default is cross-platform - but your particular platform may not
support it (CE).

The .NET API also relies on the C API. Our default .NET API is for .NET 2.0 Framework, but we also have .NET
libraries for .NET 1.1 and .NET Compact Framework (CE).

The COM API relies on the C API. The COM API is programmed against when coding in VB6, VBScript, Excel (VBA),
Delphi and Labview.

The ActionScript 3.0 Library relies on a communication link with a PhidgetWebService (see below). ActionScript 3.0
is used in Flex and Flash 9.

Programming Hints
Every Phidget has a unique serial number - this allows you to sort out which device is which at runtime. Unlike •	
USB devices which model themselves as a COM port, you don’t have to worry about where in the USB bus you
plug your Phidget in. If you have more than one Phidget, even of the same type, their serial numbers enable
you to sort them out at runtime.

Each Phidget you have plugged in is controlled from your application using an object/handle specific to that •	
phidget. This link between the Phidget and the software object is created when you call the .OPEN group of
commands. This association will stay, even if the Phidget is disconnected/reattached, until .CLOSE is called.

The Phidget APIs are designed to be used in an event-driven architecture. While it is possible to poll them, we •	
don’t recommend it. Please familiarize yourself with event programming.

Networking Phidgets
The PhidgetWebService is an application written by Phidgets Inc. which acts as a network proxy on a computer. The
PhidgetWebService will allow other computers on the network to communicate with the Phidgets connected to that
computer. ALL of our APIs have the capability to communicate with Phidgets on another computer that has the
PhidgetWebService running.

The PhidgetWebService also makes it possible to communicate with other applications that you wrote and that are
connected to the PhidgetWebService, through the PhidgetDictionary object.

101062_0_Product_Manual - January 11, 2010 3:03 PM

Documentation
Programming Manual
The Phidget Programming Manual documents the Phidgets software programming model in a language and device
unspecific way, providing a general overview of the Phidgets API as a whole. You can find the manual at www.
phidgets.com >> Programming.

Getting Started Guides
We have written Getting Started Guides for most of the languages that we support. If the manual exists for the
language you want to use, this is the first manual you want to read. The Guides can be found at www.phidgets.com
>> Programming, and are listed under the appropriate language.

API Guides
We maintain API references for COM (Windows), C (Windows/Mac OSX/Linux), Action Script, .Net and Java. These
references document the API calls that are common to all Phidgets. These API References can be found under www.
phidgets.com >> Programming and are listed under the appropriate language. To look at the API calls for a specific
Phidget, check its Product Manual.

Code Samples
We have written sample programs to illustrate how the APIs are used.

Due to the large number of languages and devices we support, we cannot provide examples in every language for
every Phidget. Some of the examples are very minimal, and other examples will have a full-featured GUI allowing
all the functionality of the device to be explored. Most developers start by modifying existing examples until they
have an understanding of the architecture.

Go to www.phidgets.com >> Programming to see if there are code samples written for your device. Find the
language you want to use and click on the magnifying glass besides “Code Sample”. You will get a list of all the
devices for which we wrote code samples in that language.

Functions
int MotorCount() [get]

Returns the number of motors this PhidgetStepper can control. In the case of the 1062, this will always
return 4. This call does not return the number of motors actually connected - on the 1062, there is no way of
programmatically finding out if motors are connected.

double Acceleration(int MotorIndex) [get,set]

Acceleration is the maximum change in velocity the PhidgetStepper uses when speeding up/ slowing down the
motor. This is specified in the same units used for MotorPosition - in the case of the 1062, half-steps.

If your motor is heavily loaded, or not supplied with a high enough voltage, there will be a practical limit on how •	
fast it can accelerate.

The range of valid Acceleration permitted is bounded by the software properties AccelerationMax/•	
AccelerationMin.

This property should be set by the user as part of initialization. If not set, this value will remain unknown, •	
and could be any of: Minimum acceleration, mid-point acceleration, or any value previously set by another
application.

double AccelerationMax(int MotorIndex) [get] : Constant

AccelerationMax is the Maximum Acceleration the 1062 can accept, and apply to the motor. That does not mean
that your motor can accelerate that fast!

API for the PhidgetStepper Unipolar 4-Motor
We document API Calls specific to this product in this section. Functions common to all Phidgets and functions not
applicable to this device are not covered here. This section is deliberately generic. For calling conventions under a
specific language, refer to the associated API manual. For exact values, refer to the device specifications.

111062_0_Product_Manual - January 11, 2010 3:03 PM

double AccelerationMin(int MotorIndex) [get] : Constant

AccelerationMin is the Minimum Acceleration the 1062 can accept, and apply to the motor.

double Velocity(int MotorIndex) [get]

Velocity returns the current speed that a particular motor is being driven at. In the case of the 1062, the unit
is half-steps per second. With the PhidgetStepper, there is no way of directly controlling the velocity of a motor,
because of acceleration curves, however the maximum velocity (VelocityLimit) can be set. The Velocity is returned
from the 1062 - so there will be a delay - typically 30-50ms.

double VelocityLimit(int MotorIndex) [get,set]

Sets the maximum velocity that the stepper controller will move the motor. Please note that this is not necessarily
the speed that the motor is being turned at. The motor is accelerated to the VelocityLimit, and then decelerated as
it approaches the target. If the target is close enough, you may never reach the VelocityLimit.

VelocityLimit is bounded by VelocityMax/VelocityMin.•	

This property should be set by the user as part of initialization. If not set, this value will remain unknown, and •	
could be any of: 0 (motor won’t move), mid-point velocity, or any value previously set by another application.

Note that when VelocityLimit is set to 0, the motor will not move.•	

double VelocityMax(int MotorIndex) [get] : Constant

VelocityMax is the Maximum VelocityLimit the 1062 can accept. Functionally, this is the maximum speed that the
1062 can drive your motors at.

double VelocityMin(int MotorIndex) [get] : Constant

VelocityMin is the Minimum Velocity Limit the 1062 can accept.

int64 CurrentMotorPosition(int MotorIndex) [get,set]

Returns the current position of a motor. Note that there will be some lag (typical 30-50ms) between the
PhidgetStepper reporting a position, and that position being read by your application. CurrentMotorPosition is fixed-
point - an increment of one is one half-step - the smallest step that the 1062 can move the motor.

Sets the position that the PhidgetStepper is at right now. This is useful for zeroing the position when a limit switch
is reached, for example. To keep accurate track of position, CurrentMotorPosition should only be set when the
MotorStopped property is true, because if this property is set while the motor is moving, the motor will have to
decelerate to stop moving, before setting the current position.

int64 TargetMotorPosition(int MotorIndex) [get,set]

Sets the desired motor position. Note that setting TargetMotorPosition will override a previous set
TargetMotorPosition, and the motor will begin tracking to the new position immediately. The velocity of the motor
will be ramped appropriately. TargetMotorPosition is bounded by MotorPositionMin, and MotorPositionMax.

Returns the last set TargetMotorPosition.

int64 MotorPositionMax(int MotorIndex) [get] : Constant

MotorPositionMax is the Maximum MotorPosition the 1062 can accept. Functionally, this is the largest position that
the 1062 can move your motors toward. The initial MotorPosition is halfway between Min and Max. Behaviour is
undefined if MotorPosition is driven past Min or Max.

int64 MotorPositionMin(int MotorIndex) [get] : Constant

MotorPositionMin is the Minimum MotorPosition the 1062 can move your motors toward.

bool Engaged(int MotorIndex) [get,set]

Enables a particular stepper to be positioned. If this property is false, no power is applied to the motor. Note that
when the motor is first Enabled, the coils may not be exactly aligned, and the motor will snap to position.

MotorOn is useful to reduce the power consumed by a motor once it’s reached a given position. If you are
concerned about keeping accurate track of position, MotorOn should not be disabled until MotorStopped = True.

121062_0_Product_Manual - January 11, 2010 3:03 PM

bool Stopped(int MotorIndex) [get]

MotorStopped guarantees that the motor is not moving (unless you are moving it by hand), and that there are no
commands in the pipeline to the motor. Note that virtually any API calls will cause MotorStopped to be temporarily
false, even changing Acceleration or VelocityLimit on a stopped motor.

Events
VelocityChange(int MotorIndex, double Velocity) [event]

An event issued when the velocity changes on a motor.

PositionChange(int MotorIndex, int64 Velocity) [event]

An event issued when the position changes on a motor. You are not guaranteed to receive events for every motor
position - updates are throttled at approximately 16ms.

131062_0_Product_Manual - January 11, 2010 3:03 PM

Introduction to Stepper Motors
Stepper motors are broadly available motors commonly used for positioning. DC
Motors are controlled by simply applying power which sends them blindly spinning.
Steppers Motors are controlled in a series of discrete steps, allowing them to be
sent to a very precise position. By repeating the set of steps over and over, the
motor can be made to rotate while your system tracks the position.

Some steppers will require hundreds of steps to do a full rotation, while others, like
the air core motor, can do a full rotation with only 4 steps.

Many stepper controllers rely on the resistance of the coils of wire inside the
stepper motor to control the amount of current. In fact, the 1062 PhidgetStepper uses this simpler (and cheaper)
method.

The vast majority of steppers are built using two coils of wire, whose magnetism pulls or repels a rotating magnet
attached to an exposed shaft. Depending on how these two coils are available to wire up, we get 4, 5, 6 or 8 wire
stepper motors.

Unipolar Stepper motors are available in 5, 6 or 8 wire configurations. By making the middle of the coils available
for connection, the cost of the controlling electronics can be reduced. Driving a motor in the Unipolar configuration
reduces the maximum torque the motor can produce.

The word Unipolar means that the coils have current passing in one direction only. When the center tap of each coil
is connected to the power supply, the ends of each coil can be grounded or left floating (ungrounded) in sequence
to generate the magnetic fields to rotate the motor.

How to connect your Stepper to the 1062
Unipolar Stepper motors are available in 5, 6 or 8 wire configurations.

5 Wire Stepper Motors

 In a 5 wire motor, the center taps of the coils are connected together. This scheme
prevents this motor from being controlled as a bipolar motor.

To use a 5 wire motor as a unipolar, the center tap wire is connected to the power
supply.

Determining how to connect a 5 wire stepper to a Unipolar Stepper Controller, like the
1062 can be done by following this procedure.

Start by measuring the resistance between all the wires. Below is a sample table of
resistance data, in ohms. This table contains example values, your readings may be
different but should still produce a similar pattern.

Looking at the table, you should notice a pattern; the black wire has the same resistance to the other four wires.
This tells us that black is our + (center tap) wire, and should be wired to the power supply connection. On the 1062
PhidgetStepper, the power supply connection is labelled as (+). There are two power supply connections available
on the 1062 for each motor - either can be used.

Pick one of the remaining four wires and wire it to the A terminal. Now carefully try connecting the remaining three
wires to the B, C, D terminals until you find a sequence that results in the motor turning.

Technical Section

5 wire motor

+

A

B

C D

Red Green Black White Brown

Red 147 74 147 147

Green 74 147 147

Black 74 74

White 147

Brown

141062_0_Product_Manual - January 11, 2010 3:03 PM

There are in fact two valid combinations, one that will produce a clockwise rotation in the stepper motor for
increasing position and one to produce counter-clockwise rotation. In order to reverse this rotation, simply swap the
(A, B) wire pair and the (C, D) wire pair.

6 Wire Stepper Motors - Unipolar

The process is similar to a 5 wire motor. On a 6 – wire motor, there will be two + wires,
one for each coil, which are the center taps for each coil. You will need to isolate which
are the center tap wires and the corresponding wires for their coil.

These center taps must be wired together to the power supply.

Let’s assume our six wire stepper motor wires are colored as follows: red, green, black,
white, brown, and yellow.

We measure the resistance between all wires and are presented with the following
values in ohms (these are simply example values) :

Looking at our table, we can see our pattern. The red wire has the same resistance to
the brown and yellow wires. The green wire has the same resistance to the black and white wire. Red, brown, and

yellow bring out one coil, and green, black, and white are the other coil. The red and green wires are the center of
their coils.

Connect red and green to the (+) terminal block connections on the PhidgetStepper. Pick one of the remaining four
wires and wire it to the A terminal. Now carefully try connecting the remaining three wires to the B,C,D terminals
until you find a sequence that results in the motor turning.

There are in fact two valid combinations, one that will produce a clockwise rotation in the stepper motor for
increasing position and one to produce counter-clockwise rotation. In order to reverse this rotation, simply swap the
(A, B) wire pair and the (C, D) wire pair.

8 Wire Stepper Motors - Unipolar

8 Wire Motors are very difficult to wire up if you do not have a schematic showing how
the wires are connected to the internal coils. Only follow these instructions if you are
really desperate.

In an 8 wire motor, the coils are split, and to operate it as a unipolar, we have to
reconnect the coils to reduce it to a 6 wire unipolar.

Assume our eight wire stepper motor wires are colored as follows: red, yellow, black,
orange, blue, green, brown, and white. In an 8-wire stepper motor, these wires would be
part of 4 coils, 2 wires per coil. We need to determine the cable pairings.

We measure the resistance between each wire and are presented with the following
values in ohms (these are simply example values):

This table tells us which wires are parts of a coil. From the table we can tell that red/

6 wire motor

+

A

B

C D

+

Red Green Black White Brown Yellow

Red ∞ ∞ ∞ 10 10

Green 10 10 ∞ ∞

Black 20 ∞ ∞

White ∞ ∞

Brown 20

Yellow

8 wire motor

+

+

A

B

C D

151062_0_Product_Manual - January 11, 2010 3:03 PM

blue, yellow/green, black/brown, and orange/white are the coils.

We are now left with the following situation; we need to determine the proper orientation of the wires to determine
our connections. Of each pair, one of the wires will be assigned to A, B, C, or D, and the other wire will be
connected to another pair. The number of combinations to be tried to see if they produce rotation is large, but can
be reduced to a maximum of 96 possibilities by following these steps:

Choose Red/Blue to connect to A. (2 possibilities)1.	

Choose one wire of the other pairs (6 possibilities) and connect to B. The other wire from this pair is connected 2.	
to the wire from Step 1 not connected to A.

Choose one wire from the two remaining pairs (4 possibilities) and connect to C.3.	

Choose one wire from the remaining pair (2 possibilities) and connect to the wire from Step 3 not connected to 4.	
C. The remaining wire from this pair is connected to D.

After trying each permutation, engage the motor from software and try to rotate it. Since you are driving the 5.	
motor as Unipolar, the connected pairs should be connected to the (+) on the PhidgetStepper Controller.

If you attempt to use this algorithm, build a table of permutations beforehand and proceed in a systematic way.6.	

There are a total of 96 wiring combinations, of which there are 2 valid combinations where one will cause a
clockwise motor rotation and the other will cause a counter-clockwise rotation.

In order to properly determine the proper wiring for your motor we suggest consulting any manuals or data sheets
that are associated with your particular motor.

Controlling Steppers - Open and Closed Loop
Because stepper motors do not have the inherent ability to sense their actual shaft position, they are considered
open loop systems. This means that the value contained in the current position property is merely a count of the
number of steps that have occurred towards the target value; it can not be relied upon as a measure of the actual
shaft angle, as external forces may also be affecting the motor.

There are several ways of overcoming this drawback. The simplest is to allow the motor load to depress a limit
switch located at a known position. This can be used to fire an event in software to recalibrate the shaft position
values. A more elegant solution might involve the mounting of an optical encoder on the shaft and the development
of a control system.

Red Yellow Black Orange Blue Green Brown White

Red ∞ ∞ ∞ 1 ∞ ∞ ∞

Yellow ∞ ∞ ∞ 1 ∞ ∞

Black ∞ ∞ ∞ 1 ∞

Orange ∞ ∞ ∞ 1

Blue ∞ ∞ ∞

Green ∞ ∞

Brown ∞

White

161062_0_Product_Manual - January 11, 2010 3:03 PM

Stepping Mechanism
 Example stepper motor with 15° step angle

The 1062 PhidgetStepper Unipolar controls
stepper motors in half-step increments. A
Position increment of one corresponds to one
half-step. A stepper motor with 15 degree step
increments will rotate in 7.5 degree steps. The
1062 accomplishes this by alternating the number
of powered coils between one and two, always at
least one coil powered. In this way, the rotor is
positioned at both full steps and half steps. The
table below describes the order in which coils are
powered to achieve this.

After step number 8 in the table, the order the coils are powered in simply repeats from the beginning. As the mo-
tor approaches the requested position, it is decelerated according to the value of the acceleration property. When
the desired position has been reached, the 1062 stops the motor and holds it at that position.

Continuous Rotation
A stepper motor can be caused to rotate continuously by simply setting the motor position property to an extremely
large number. The valid range of values for the motor position property is large enough to be able to cause the
motor to continuously turn at maximum velocity for 45 years.

Disabling the PhidgetStepper Unipolar
When the stepper motor has rotated a requested number of half steps, and is stopped, the coils will remain
energized to hold it in position. This is necessary to allow the motor to support a load on it’s shaft without rotating
to an unknown position.

The amount of current required to hold a motor shaft in place is called the holding current, and is based mainly on
the resistance of the motor coils and the load being supported by the motor. The current required to produce the
holding torque can often be large enough to cause the motor to generate heat from the power dissipated in the
coils. If the motor is not supporting a load or is not required to maintain a specific angle, it is recommended to set
the Enable property to false. This will allow the motor shaft to rotate freely, but the present angle may be lost if
forces on the motor-shaft are greater than can be resisted by the detent torque of the unpowered motor.

Starting the motor
When the steppers are first engaged from software, the stepper motor likely will not be at the same state as the
default output state of the controller. This will cause the stepper to ‘snap’ to the position asserted by the controller -
potentially moving by 2 full steps.

 High precision applications
Stepper motors precision are limited by the manufacturing process used to build them. Errors in the rotor and coils
will cause some degree of inaccuracy. In our experience, inexpensive stepper motors will often have positioning
errors approaching a half-step.

 Synchronization of multiple motors
Many applications call for several steppers motors operating in unison - for example, operating a CNC table, or a
robot arm. Highly precise synchronization of steppers using the PhidgetStepper is not possible, as the sequencing
will be affected by the real-time performance of your operating system. Each stepper is controlled as a independent
unit, so there is no way of arranging for a particular action to happen to all motors at the same time. Typical jitter
can be 10-30mS.

Step Number Coil(s) Powered Shaft Angle
A B C D

1 1 0 1 0 0°

2 1 0 0 0 7.5°

3 1 0 0 1 15°

4 0 0 0 1 22.5°

5 0 1 0 1 30°

6 0 1 0 0 37.5°

7 0 1 1 0 45°

8 0 0 1 0 52.5°

171062_0_Product_Manual - January 11, 2010 3:03 PM

Mechanical Drawing
1:1 scale

Note: When printing the mechanical drawing, “Page Scaling” in the Print panel must be set to “None” to avoid
re-sizing the image.

Device Specifications

Characteristic Value

Output Controller Update Rate 62.5 updates/second/motor

Position Resolution 1/2 step (40-bit signed)

Upper Position Limit 239 - 1 1/2 steps

Lower Position Limit -(239 - 1) 1/2 steps

Velocity Resolution 0.75 1/2 steps/second (9-bit)

Velocity Limit 383.25 1/2 steps/second

Acceleration Resolution 140.625 1/2 steps/second2 (6-bit)

Acceleration Limit 8859.375 1/2 steps/second2

Minimum Power Supply Voltage 5V

Maximum Power Supply Voltage 12V

Max Current Per Coil 1A

USB-Power Current Specification 100mA max

Device Quiescent Current Consumption 23mA

Note: Current from USB supply is not available for motors

181062_0_Product_Manual - January 11, 2010 3:03 PM

Date Board Revision Device Version Comment
April 2008 0 101 Product Release

Product History

Support
Call the support desk at 1.403.282.7335 8:00 AM to 5:00 PM Mountain Time (US & Canada) - GMT-07:00•	

or

E-mail us at: support@phidgets.com•	

	Product Features
	Programming Environment
	Connection

	Getting Started
	Checking the Contents
	Connecting all the pieces
	Testing Using Windows 2000/XP/Vista
	Downloading the Phidgets drivers
	Running Phidgets Sample Program

	Testing Using Mac OS X
	If you are using Linux
	If you are using Windows Mobile/CE 5.0 or 6.0

	Programming a Phidget
	Architecture
	Libraries
	Programming Hints
	Networking Phidgets
	Documentation
	Programming Manual
	Getting Started Guides
	API Guides

	Code Samples
	API for the PhidgetStepper Unipolar 4-Motor
	Functions
	Events

	Technical Section
	Introduction to Stepper Motors
	How to connect your Stepper to the 1062
	Controlling Steppers - Open and Closed Loop

	Stepping Mechanism
	Continuous Rotation
	Disabling the PhidgetStepper Unipolar
	Starting the motor
	Mechanical Drawing
	Device Specifications

	Product History
	Support

