
Product Manual
1065 - PhidgetMotorControl 1-Motor

Phidgets 1065 - Product Manual

For Board Revision 0

© Phidgets Inc. 2011

Contents

5 Product Features

5 Programming Environment

5 Connection

6 Getting Started

6 Checking the Contents

6 Connecting all the pieces

6 Testing Using Windows 2000/XP/Vista/7

6 Downloading the Phidgets drivers

7 Running Phidgets Sample Program
8 Testing Using Mac OS X

8 If you are using Linux

8 If you are using Windows Mobile/CE 5.0 or 6.0

9 Programming a Phidget

9 Architecture

9 Libraries

9 Programming Hints

9 Networking Phidgets

10 Documentation

10 Programming Manual

10 Getting Started Guides

10 API Guides
10 Code Samples

10 API for the PhidgetMotorControl

10 Properties

11 Events

13 Technical Section

13 Brushed DC Motors

13 Achieving rough control of DC Motors

13 Back-EMF sensing

13 Current Sensing
13 Achieving precise control of DC Motors

14 Control Loops - Overview

14 PID Loop

14 Kalman Filter
14 Impact of latency on control loops.

15 Over Power shutoff

15 High Current Applications

15 Feedback Example

16 Analog Inputs

16 Using the Analog Inputs with Sensors provided by Phidgets

16 Using the Analog Inputs with your own sensors

16 Mechanical

16 Electrical

16	 Ratiometric	Configuration

17	 Non-Ratiometric	Configuration

17 Factors that can affect Accuracy

17 Connecting non-Phidget devices to the Analog Inputs

18 Interfacing to an arbitrary sensor

18 Non Phidgets Sensors
19 Digital Inputs

19 Using the Digital Inputs

21 Functional Block Diagram

21 Digital Input Hardware Filter

21 Digital Input Sampling Characteristics
22 Encoders

22 Quadrature Encoder Fundamentals

22 Choosing Encoders

23 Connectors
24	 Device	Specifications

25 Product History

25 Support

51065_0_Product_Manual - June 16, 2011 1:47 PM

Product Features

Controls the direction, velocity and acceleration of one DC motor•	

Motors are powered from an external power supply (9 to 28VDC)•	

Built in sensing to support software-based control loops (2 digital inputs, 2 analog inputs, 1 encoder input, Back-•	
EMF measurement, Current sensing)

Provides over-current, over-voltage and over-temperature protection•	

Connects directly to a computer’s USB port•	

Programming Environment
Operating Systems: Windows 2000/XP/Vista/7, Windows CE, Linux, and Mac OS X

Programming Languages (APIs): VB6, VB.NET, C#.NET, C++, Flash 9, Flex, Java, LabVIEW, Python, Max/MSP,
and Cocoa.

Examples: Many example applications for all the operating systems and development environments above are

available for download at www.phidgets.com >> Programming.

Connection
The board connects directly to a computer’s USB port.

61065_0_Product_Manual - June 16, 2011 1:47 PM

Connect the Motor to the 1.
PhidgetMotorControl

Connect the Encoder2.

Plug in a power supply using the barrel 3.
connector.

You can also connect a power supply to the 4.
Terminal Block. Be sure to observe correct
polarity.

Connect your sensor to an analog input. We 5.
are using a Phidget Slider-60.

Connect one end of the wire to the Ground 6.
connector and the other end to connector 0.

Connect the MotorControl to your computer 7.
using the USB cable.

1

4

3

2

7

Getting Started
Checking the Contents

You should have received:

A PhidgetMotorControl 1-Motor•	

A Mini-USB cable•	

Connecting all the pieces

In order to fully test your new Phidget you will
also need:

A 9 to 28VDC power supply•	

A DC motor with integrated encoder•	

An Analog Sensor (we are using an a temperature sensor)•	

A piece of wire to test the digital inputs•	

5
6

7

Testing Using Windows 2000/XP/Vista/7
Downloading the Phidgets drivers
Make sure that you have the current version of the Phidget library installed on your PC. If you don’t, do the
following:

Go to www.phidgets.com >> Drivers

Download and run Phidget21 Installer (32-bit, or 64-bit, depending on your PC)

You should see the icon on the right hand corner of the Task Bar.

71065_0_Product_Manual - June 16, 2011 1:47 PM

The source code for the motorcontrol-full sample program can be found under C# by clicking on
www.phidgets.com >> Programming.

Double Click on the icon to activate the Phidget
Control Panel and make sure that the Phidget Motor
Controller 1-Motor is properly attached to your PC.

Running Phidgets Sample Program

Double clicking on the icon loads the Phidget Control Panel; we will use this program to make sure that your
new Phidget works properly.

1

2

3

5

4

6
7

8

Double Click on 1. Phidget Motor Controller 1-Motor in the
Phidget Control Panel to bring up MotorControl-full and check
that the box labelled Attached contains the word True.

Move the target velocity slider to a target velocity setting. The 2.
Current Velocity is displayed in the Current Velocity Box. The
motor will accelerate until the current velocity is equal to the
target velocity.

You can change the acceleration by using the acceleration 3.
slider.

Turn On Back EMF Sensing. 4.

When the motor is stopped, you can create some shaft 5.
resistance by using the braking slider.

Test the digital input by disconnecting the wire end connected 6.
to the digital input connector. The tick mark in the box will go
away.

You can read the Encoder Position and reset it to 0 by clicking 7.
on the Reset button.

The sensors box displays the SensorValue of the Analog Inputs. 8.
Click on the Ratiometric box if your sensor is ratiometric.

81065_0_Product_Manual - June 16, 2011 1:47 PM

Testing Using Mac OS X
Click on System Preferences >> Phidgets (under Other) to activate the Preference Pane•	

Make sure that the PhidgetMotorControl 1-Motor is properly attached.•	

Double Click on Phidget MorotControl 1-Motor in the Phidget Preference Pane to bring up the MotorControl-full •	
Sample program. This program will function in a similar way as the Windows version.

If you are using Linux
There are no sample programs written for Linux.

Go to www.phidgets.com >> Drivers

Download Linux Source

Have	a	look	at	the	readme	file	•	

Build Phidget21 •	

The most popular programming languages in Linux are C/C++ and Java.

Notes:

Many Linux systems are now built with unsupported third party drivers. It may be necessary to uninstall these
drivers for our libraries to work properly.

Phidget21 for Linux is a user-space library. Applications typically have to be run as root, or udev/hotplug must be
configured	to	give	permissions	when	the	Phidget	is	plugged	in.

If you are using Windows Mobile/CE 5.0 or 6.0
Go to www.phidgets.com >> Drivers

Download x86, ARMV4I or MIPSII, depending on the platform you are using. Mini-itx and ICOP systems will be x86,
and most mobile devices, including XScale based systems will run the ARMV4I.

The	CE	libraries	are	distributed	in	.CAB	format.		Windows	Mobile/CE	is	able	to	directly	install	.CAB	files.

The most popular languages are C/C++, .NET Compact Framework (VB.NET and C#). A desktop version of Visual
Studio	can	usually	be	configured	to	target	your	Windows	Mobile	Platform,	whether	you	are	compiling	to	machine	
code or the .NET Compact Framework.

91065_0_Product_Manual - June 16, 2011 1:47 PM

Programming a Phidget

Phidgets’ philosophy is that you do not have to be an electrical engineer in order to do projects that use devices
like sensors, motors, motor controllers, and interface boards. All you need to know is how to program. We have
developed a complete set of Application Programming Interfaces (API) that are supported for Windows, Mac OS X,
and Linux. When it comes to languages, we support VB6, VB.NET, C#.NET, C, C++, Flash 9, Flex, Java, LabVIEW,
Python, Max/MSP, and Cocoa.

Architecture
We have designed our libraries to give you the maximum amount of freedom. We do not impose our own
programming model on you.

To achieve this goal we have implemented the libraries as a series of layers with the C API at the core surrounded
by other language wrappers.

Libraries
The lowest level library is the C API. The C API can be programmed against on Windows, CE, OS X and Linux. With
the C API, C/C++, you can write cross-platform code. For systems with minimal resources (small computers), the C
API may be the only choice.

The Java API is built into the C API Library. Java, by default is cross-platform - but your particular platform may not
support it (CE).

The .NET API also relies on the C API. Our default .NET API is for .NET 2.0 Framework, but we also have .NET
libraries for .NET 1.1 and .NET Compact Framework (CE).

The COM API relies on the C API. The COM API is programmed against when coding in VB6, VBScript, Excel (VBA),
Delphi and Labview.

The ActionScript 3.0 Library relies on a communication link with a PhidgetWebService (see below). ActionScript 3.0
is used in Flex and Flash 9.

Programming Hints
Every Phidget has a unique serial number - this allows you to sort out which device is which at runtime. Unlike •	
USB devices which model themselves as a COM port, you don’t have to worry about where in the USB bus you
plug your Phidget in. If you have more than one Phidget, even of the same type, their serial numbers enable
you to sort them out at runtime.

Each	Phidget	you	have	plugged	in	is	controlled	from	your	application	using	an	object/handle	specific	to	that	•	
phidget. This link between the Phidget and the software object is created when you call the .OPEN group of
commands. This association will stay, even if the Phidget is disconnected/reattached, until .CLOSE is called.

For full performance, the Phidget APIs are designed to be used in an event driven architecture. Applications that •	
require receiving all the data streaming from the device will have to use event handlers, instead of polling.

Networking Phidgets
The PhidgetWebService is an application written by Phidgets Inc. which acts as a network proxy on a computer. The
PhidgetWebService will allow other computers on the network to communicate with the Phidgets connected to that
computer. ALL of our APIs have the capability to communicate with Phidgets on another computer that has the
PhidgetWebService running.

The PhidgetWebService also makes it possible to communicate with other applications that you wrote and that are
connected to the PhidgetWebService, through the PhidgetDictionary object.

101065_0_Product_Manual - June 16, 2011 1:47 PM

Documentation
Programming Manual
The Phidget Programming Manual documents the Phidgets software programming model in a language and device
unspecific	way,	providing	a	general	overview	of	the	Phidgets	API	as	a	whole.		You	can	find	the	manual	at	www.
phidgets.com >> Programming.

Getting Started Guides
We have written Getting Started Guides for most of the languages that we support. If the manual exists for the
language	you	want	to	use,	this	is	the	first	manual	you	want	to		read.	The	Guides	can	be	found	at	www.phidgets.com
>> Programming, and are listed under the appropriate language.

API Guides
We maintain API references for COM (Windows), C (Windows/Mac OSX/Linux), Action Script, .Net and Java. These
references document the API calls that are common to all Phidgets. These API References can be found under www.
phidgets.com >> Programming	and	are	listed	under	the	appropriate	language.	To	look	at	the	API	calls	for	a	specific	
Phidget, check its Product Manual.

Code Samples
We have written sample programs to illustrate how the APIs are used.

Due to the large number of languages and devices we support, we cannot provide examples in every language for
every Phidget. Some of the examples are very minimal, and other examples will have a full-featured GUI allowing
all the functionality of the device to be explored. Most developers start by modifying existing examples until they
have an understanding of the architecture.

Go to www.phidgets.com >> Programming to see if there are code samples written for your device. Find the
language you want to use and click on the magnifying glass besides “Code Sample”. You will get a list of all the
devices for which we wrote code samples in that language.

API for the PhidgetMotorControl
We	document	API	Calls	specific	to	this	product	in	this	section.	Functions	common	to	all	Phidgets	and	functions	not	
applicable to this device are not covered here. This section is deliberately generic. For calling conventions under a
specific	language,	refer	to	the	associated	API	manual.	For	exact	values,	refer	to	the	device	specifications.

Properties
int MotorCount() [get] : Constant = 1

Returns the number of Motors that can be controlled by this PhidgetMotorControl.

double Velocity (int MotorIndex) [get,set]

Velocity is the percentage of time the motor is being powered for. The PhidgetMotorControl rapidly switches power
to the motor on/off. Velocity can be set between –100 and +100. –100 corresponds to the motor being driven
100% of the time in reverse, +100 driven 100% of the time forward. When velocity is 0, the motor is controlled by
the Braking property, which defaults to 0%.

double Acceleration (int MotorIndex) [get,set]

Returns how fast a motor will be accelerated between given velocities. The valid range is between AccelerationMax
and AccelerationMin. Acceleration is in %(change in velocity)/s2.

double AccelerationMax (int MotorIndex) [get] : Constant = 6250%/s2

Returns the maximum acceleration that a motor will accept, or return, in %(change in velocity)/s2.

double AccelerationMin (int MotorIndex) [get] : Constant = 24.51%/s2

Returns the minimum acceleration that a motor will accept, or return, in %(change in velocity)/s2.

111065_0_Product_Manual - June 16, 2011 1:47 PM

double Current(int MotorIndex) [get]

Gets the current usage of a motor, in Amps.

bool BackEMFSensingState(int MotorIndex) [get,set]

Gets/Sets the back-EMF sensing state for a motor. When back-EMF sensing is enabled, the motor will coast (free-
wheel) 5% of the time while the back EMF measurement is taken (800us every 16ms). Therefore at a velocity of
100%, the motor is only powered 95% of the time. By default, this is disabled.

double BackEMF(int MotorIndex) [get]

Gets the back-EMF measurement for a motor, in Volts. This is only available if BackEMFSensingState is set to
true. Back-EMF generally corresponds roughly to true motor velocity - see technical section for details.

double Braking(int MotorIndex) [get,set]

Gets/sets the braking amount for a motor at rest, with a range of 0-100%. Braking is only active when the motor
velocity is 0. By default, braking is 0%, allowing the motor to coast (free-wheel). The holding strength of a braked
motor depends on the motor, but is generally quite low.

double SupplyVoltage() [get]

Gets the board supply voltage, in Volts.

int InputCount() [get] : Constant = 2

Returns the number of digital inputs.

bool InputState(int InputIndex) [get]

Returns the state of a digital input. True means that the input is activated, and False indicated the default state.

int EncoderCount() [get] : Constant = 1

Returns the number of encoder inputs.

int EncoderPosition(int EncoderIndex) [get,set]

Sets/gets the current encoder position of an encoder. Note that precision is 1/4 of that supported by the
PhidgetEncoders 1047 and 1057 - see the technical section for more information.

int SensorCount() [get] : Constant = 2

Returns the number of analog sensor inputs.

int SensorValue(int SensorIndex) [get]

Gets the current value for a sensor input. Range is 0-1000.

int SensorRawValue(int SensorIndex) [get]

gets the raw 12-bit value for a sensor input. Range is 0-4096.

bool Ratiometric() [get,set]

Gets/sets the ratiometric state for the analog sensor inputs. Defaults to true.

Events
OnVelocityChange(int MotorIndex, double Velocity) [event]

An event issued when the velocity a motor is being driven at changes.

OnCurrentChange(int MotorIndex, double Current) [event]

An event issued whenever the current consumed by a motor changes.

OnCurrentUpdate(int MotorIndex, double Current) [event]

An event containing current consumption information for a motor, which is issued at a set interval of 8ms. This is
generally used for PID torque control.

121065_0_Product_Manual - June 16, 2011 1:47 PM

OnBackEMFUpdate(int MotorIndex, double BackEMF) [event]

An event containing the back-EMF value for a motor, which is issued at a set interval of 16ms, when back-EMF
sensing is enabled. This is generally used for PID velocity control.

OnInputChange(int InputIndex, bool State) [event]

An event issued when the state of a digital input changes.

OnEncoderPositionChange(int EncoderIndex, int Time, int PositionChange) [event]

An event issued when the position of an encoder changes. Time is in 1/3ms and represents the amount of time in
which PositionChange counts occurred.

OnEncoderPositionUpdate(int EncoderIndex, int PositionChange) [event]

An event containing position change information for an encoder, which is issued at a set interval of 8ms, regardless
of whether the position has changed. This is generally used for PID velocity and/or position control.

OnSensorUpdate(int SensorIndex, int SensorValue) [event]

An event containing sensor value information for sensors plugged into the Analog Inputs, which is issued at a set
interval of 8ms. This may be used for PID control loops depending on the type of sensor being used.

OnError(int ErrorCode, String ErrorDescription) [event]

The PhidgetMotorControl 1-Motor will throw error events under certain circumstances:

ErrorCode = EEPHIDGET_WRAP - The position value for an encoder is wrapping around (between
2147483647 and -2147483648).

ErrorCode = EEPHIDGET_PACKETLOST - A packet of data has been lost. This should be taken into
consideration when the Update events are being used, as a gap will be present in the data - 8ms/packet lost
error event.

ErrorCode = EEPHIDGET_OVERTEMP - An over-temperature, or short-circuit condition has occurred. The
output will be clamped at 5-8 Amps.

ErrorCode = EEPHIDGET_BADPOWER - The supply voltage is too low or too high. This is thrown if the
voltage is <=7V, or >=34V. There are several different messages depending on how far out of spec the voltage
is. Quick load/velocity changes can cause spike in the supply voltage - if these spikes exceed 40V, the motor is
automatically placed in 100% braking - braking ends when the supply voltage falls to <38V.

When error states have ended, there will be an error event with the EEPHIDGET_OK code.

See	the	ErrorDescription	string	for	specific	error	details.

131065_0_Product_Manual - June 16, 2011 1:47 PM

Technical Section

Brushed DC Motors
Brushed	DC	Motors	are	very	simple	to	understand,	but	very	difficult	to	control	precisely.		By	applying	a	voltage,	or	
pulsing	a	voltage	rapidly,	at	the	terminals	of	the	motor,	current	flows	through	the	motor,	and	it	will	begin	rotating.		
Depending on the direction of the current, the motor will rotate clockwise or counterclockwise.

The	brushes	inside	the	motor	automatically	flip	the	direction	of	current	inside	the	motor,	allowing	the	motor	to	rotate	
continuously without the external precise control required for stepper motors. There are two downsides of letting
the motor ‘sequence’ itself.

It’s not possible to control the timing - the motor will rotate as fast as possible, given it’s construction, the 1.
voltage applied, and the load it is driving.

The brushes generate sparks and Electromagnetic Interference, and have a fairly limited lifetime. On 2.
cheaper motors, the brushes are not replaceable, and when the brushes are worn out, the motor is garbage.

Given that the speed of the DC motor depends on its construction, the load it is driving, and the voltage applied,
the only practical way to change the speed of the motor is by changing the applied voltage. The 1065 changes the
effective voltage by changing the percentage of time the full supply voltage is applied to the motor. By switching
the	voltage	very	quickly	(a	technique	called	PWM),	the	controller	is	made	smaller,	more	efficient,	and	cheaper.

Achieving rough control of DC Motors
Depending on your application, you may not need precise control of the motor. If your power supply voltage
and load are relatively constant, and you can tolerate some small variation in speed, simply tuning the Velocity in
software to get the results you want will work. Using a DC Motor as a fan is an example.

Back-EMF sensing
Rough control of actual motor speed can be achieved automatically in software by using the Back EMF property.
The 1065 very quickly removes power from the motor, and measures the generated voltage. As the motor spins
faster, the generated voltage increases, and is quite linear with the rotation speed. The relationship between
motor speed and Back EMF depends on the motor construction. A good clue is the rated speed at the rated supply
voltage.		For	example,	a	DC	Motor	that	is	specified	for	4000	RPM	at	12V	will	generate	roughly	12	Volts	when	it	spins	
at 4000 RPM. At 2000 RPM, it will generate roughly 6 Volts.

There is a fairly large amount of noise in BackEMF measurements, so backEMF should not be used for precise
velocity measurements.

Current Sensing
Rough control of motor torque can be achieved in software by using the Current Sense property and events. The
current	in	the	coils	of	a	DC	motor	will	roughly	correspond	to	the	torque	it	is	generating.		Torque	is	difficult	for	many	
people to understand - a motor accelerating quickly from stop will experience a huge surge of current as the motor
pushes against it’s own inertia and accelerates the load. Unless the motor is loaded down, when it is spinning at a
stable speed, it is experiencing very little torque, and consuming very little current.

Achieving precise control of DC Motors
Encoder Input
The true acceleration, velocity and number of rotations of a DC motor is controlled by using an Encoder to measure
the movement of the motor shaft. The encoder rotates with the motor, and produces pulses. An encoder with very
high resolution will produces thousands of precisely spaced pulses with a single rotation - an encoder with lower
resolution will produce a dozen pulses. Please note we are referring to Quadrature (incremental) Encoders.

141065_0_Product_Manual - June 16, 2011 1:47 PM

By having electronics counting the number of pulses, and the time between pulses, it’s straightforward to calculate
the velocity of the motor, and how far it has rotated. The 1065 has an encoder input, and will stream the pulse and
timing	information	to	your	application,	where	a	software	control	loop	modifies	the	motor’s	target	velocity.

The 1065 does not support the most accurate method of measuring encoders. Our PhidgetEncoder products (1047
and 1057) measure PPR(pulses per revolution), which has the ability to count every pulse change in the encoder.
The 1065 measures CPR(counts per revolution). PPR has 4 times the resolution of CPR (ie there are 4 pulses for
every 1 count). So the accuracy on the 1065 encoder is 1/4 as precise as 1047/1057. However, CPR are still very
accurate, and makes the encoder feedback your best method for velocity/position feedback control. Use high CPR
encoders (500 - 1000) for maximum precision.

System Level Control
Control can also achieved by stepping back from the motor, and viewing the system as a whole. If the system is a
mechanism to close a door, the only feedback required could be a switch on either extreme of the range of motion
of the mechanism.

Control Loops - Overview
In the context of the 1065, A software control loop is an algorithm in your software application that receives sensor
data, and uses that data to calculate how hard and in what direction it should drive the motor to achieve it’s goal.
Control	Theory	is	an	extremely	complex	academic	field,	and	in	most	cases	there	are	simpler	methods.

If your application is simple - opening a door with two limit switches, for instance, no fancy algorithm is required.

PID Loop
To control a motor’s position and/or velocity under varying load conditions - a common application - the PID loop is
a place to start. The performance of the system is determined by tuning three ‘magic numbers’ for the Proportional,
Integral and Derivative terms. If you understand Control Theory, these magic numbers can be calculated. For the
rest	of	us,	the	typical	approach	is	to	first	tune	the	Proportional	Term,	increase	the	Integral	term	if	necessary,	and	
usually leave the Derivative term at zero.

The proportional term sets how strongly the system responds immediately to the difference between it’s target
goal, and it’s current measured performance. For example, if the cruise control on a car is set to 100 kph, and the
speedometer indicates the speed is 90 kph, the proportional term sets how much throttle is applied.

The integral term allows the control loop to respondly more strongly over time to situations where the proportional
term is unable to reach the target. The integral term can be thought of as a slowly building impatience within the
control loop.

The derivative term is used to prevent the control loop from overshooting the target. In practice, it requires
very precise measurements to calculate how quickly the loop is approaching the target. In many systems, the
measurements are not accurate enough, and the derivative term only causes system instability.

Kalman Filter
More	sophisticated	control	loops,	like	Kalman	filters,	are	built	with	specialized	knowledge	of	the	exact	application.		In	
fact,	a	Kalman	filter	is	not	so	much	a	filter	as	it	is	a	mathematical	model	of	the	application,	incorporating	the	laws	
of physics, and expectations of how the system should behave and respond. With the cruise control example, if
the wheels spin on black ice, the PID loop will not respond appropriately. An experienced driver, and a much more
sophisticated	control	algorithm	like	a	Kalman	filter	will	realize	that	something	unusual	is	happening.

Impact of latency on control loops.
There is a time delay required to measure the system (encoders, Back EMF, current, sensors, etc.), receive this data
in your application, and send the new target velocity to the Motor Controller. If the system being controlled by the
control loop can respond as quickly, or quicker than this time delay, the system will be plagued by oscillations. The
1065 was designed to minimize the delays as much as possible, but very fast responding control systems will require
extra care.

151065_0_Product_Manual - June 16, 2011 1:47 PM

Over Power shutoff
The 1065 has a polarity protection diode built in to protect the controller if the power supply is hooked up
backwards. This diode has the effect of trapping energy generated by the motor in the 1065. When the motor
operates as a generator, the supply voltage begins to increase. This is continually monitored, and if the Supply
Voltage goes above 40 volts, the motor will be put into a braking mode to protect the controller. This mode is
turned off when Supply Voltage drops below 38V.

High Current Applications
Since 1065 is rated for 5A continuous current, proper heat dissipation techniques should be taken if getting to the
upper limit. The 1065 is protected against over temperature, and there is no problem if over temperature happens
occasionally. If the 1065 runs permanently hot, it’s lifespan will be reduced.

If the 1065 is enclosed, or operated above normal room temperature, heat dissipation will require more effort, or it
will have to be de-rated.

Feedback Example
Here is an example of using the 1065 with a linear actuator providing feedback through an integrated potentiometer.
The actuator’s position is fed back through the analog input and can be used by the software application.

161065_0_Product_Manual - June 16, 2011 1:47 PM

Analog Inputs
Using the Analog Inputs with Sensors provided by Phidgets
Analogs Inputs are used to interface many different types of sensors. Each Analog Input provides power (Nominal
+5VDC), ground, and an analog voltage return wire driven by the sensor to some voltage. The 1065 continuously
measures this return voltage and reports it to the application.

Analog Inputs are used to measure continuous quantities, such as temperature, humidity, position, pressure, etc.
Phidgets offers a wide variety of sensors that can be plugged directly into the board using the cable included with
the sensor.

Using the Analog Inputs with your own sensors
For users who wish to interface their own sensors, we describe the Analog Inputs here.

Mechanical

Each Analog Input uses a 3-pin, 0.100 inch pitch locking connector. Pictured here is a
plug with the connections labeled. The connectors are commonly available - refer to
the Table below for manufacturer part numbers.

Cable Connectors

Manufacturer Part Number Description

Molex 50-57-9403 3 Position Cable Connector

Molex 16-02-0102 Wire Crimp Insert for Cable Connector

Molex 70543-0002 3 Position Vertical PCB Connector

Molex 70553-0002 3 Position Right-Angle PCB Connector (Gold)

Molex 70553-0037 3 Position Right-Angle PCB Connector (Tin)

Molex 15-91-2035 3 Position Right-Angle PCB Connector - Surface Mount

Note: Most of the above components can be bought at www.digikey.com

Electrical
The maximum total current consumed by all Analog Inputs should be
limited to 400mA.

The analog measurement is represented in the software through the
SensorValue as a value between 0 and 1000. A sensor value of 1 unit
represents a voltage of approximately 5 millivolts. The RawSensorValue
property brings out a 12-bit value (0-4095) for users who require
maximum accuracy. Please note that the sampling is actually done with
an oversampled 10-bit ADC, but reported as a 12-bit value to allow future
expansion.

Ratiometric Configuration
The group of Analog Inputs can be collectively set to Ratiometric mode from software using the Ratiometric
property. If you are using a sensor whose output changes linearly with variations in the sensor’s supply voltage
level,	it	is	said	to	be	ratiometric.	Most	of	the	sensors	sold	by	Phidgets	are	ratiometric	(this	is	specified	on	the	web	
product page and in the sensor’s product manual).

1

1

2

2

3

3

4

4

D D

C C

B B

A A

20pF

1K

1M

+V

ANAL OG

GROUND

Phidget
Analo g

Input x1

Detail of Analog Input

INPUT

5V PW R

1K

SAMPL ING SWIT CH

ANAL OG

GROUND

INPUT

5V PW R

Phidget
Analo g

Input

4K

Sensing the value of a variable resistance sens or

FSR

In this cas e, an FSR (force sensitiv e resistor) is shown.

1K
ANAL OG

GROUND

INPUT

5V PW R

Phidget
Analo g

Input

Sensing the position of a potentiometer

ANAL OG

GROUND

INPUT

5V PW R

Phidget
Analo g

Input

Interfacing to an arbitrary sensor

GN D3 VO UT2 VC C1

100nF

1K

100nF

Note the us e of power supply decoupling and the RC Filter on the output.
The RC �lter also prevents VOUT from oscillating on many sensors .

100nF

171065_0_Product_Manual - June 16, 2011 1:47 PM

Setting Ratiometric causes the reference to the internal Analog to Digital Converter to be set to the power supply
voltage level. When Ratiometric is enabled, the maximum voltage returned on the Analog Input should be the +5V
nominal power provided by the PhidgetInterfaceKit.

Non-Ratiometric Configuration
If Ratiometric is false, the ADC reference is set to a 5.0V 0.5% stable voltage reference. The maximum voltage
returned on the Analog Input should be maximum 5.0V. Note that the Analog Input power supply voltage is not
affected by the setting of the Ratiometric property.

Factors that can affect Accuracy
High Output Impedance - Sensors that have a high output impedance will be distorted by the 900K input
impedance of the Analog Input. If your output impedance is high, it is possible to correct for this distortion to some
extent in your software application.

Power Consumption - Sensor cables have some resistance, and the power consumption of the sensor will cause
the sensor to have a slightly different ground from the Analog Input on the PhidgetInterfaceKit. The more power
consumed by the sensor, and the longer the sensor cable, the more pronounced this effect will be.

Intrinsic Error In Sensors - For many sensors, the error is quite predictable over the life of the sensor, and it can
be measured and calibrated out in software.

Non-Ratiometric Configuration - Voltage Reference error. The 5.0VDC voltage reference is accurate to 0.5%.
This	can	be	a	significant	source	of	error	in	some	applications,	but	can	be	easily	measured	and	compensated	for.		

Connecting non-Phidget devices to the Analog Inputs
Here are some circuit diagrams that illustrate how to connect various non Phidgets devices to the analog inputs on
your Phidget.

Sensing the value of a variable resistance sensor

In this diagram, an FSR (Force Sensitive Resistor) is shown.

Sensing the position of a potentiometer

1

1

2

2

3

3

4

4

D D

C C

B B

A A

20pF

1K

1M

+V

ANALOG

GROUND

Phidget
Analog

Input x1

Detail of Analog Input

INPUT

5V PW R

1K

SAMPL ING SWITCH

ANALOG

GROUND

INPUT

5V PW R

Phidget
Analog

Input

4K

Sensing the value of a variable resistance sensor

FSR

In this case, an FSR (force sensitive resistor) is shown.

1K
ANALOG

GROUND

INPUT

5V PW R

Phidget
Analog

Input

Sensing the position of a potentiometer

ANALOG

GROUND

INPUT

5V PW R

Phidget
Analog

Input

Interfacing to an arbitrary sensor

GND3 VOUT2 VCC1

100nF

1K

100nF

Note the use of power supply decoupling and the RC Filter on the output.
The RC filter also prevents VOUT from oscillating on many sensors.

1

1

2

2

3

3

4

4

D D

C C

B B

A A

20pF

1K

1M

+V

ANALOG

GROUND

Phidget
Analog

Input x1

Detail of Analog Input

INPUT

5V PW R

1K

SAMPL ING SWITCH

ANALOG

GROUND

INPUT

5V PW R

Phidget
Analog

Input

4K

Sensing the value of a variable resistance sensor

FSR

In this case, an FSR (force sensitive resistor) is shown.

1K
ANALOG

GROUND

INPUT

5V PW R

Phidget
Analog

Input

Sensing the position of a potentiometer

ANALOG

GROUND

INPUT

5V PW R

Phidget
Analog

Input

Interfacing to an arbitrary sensor

GND3 VOUT2 VCC1

100nF

1K

100nF

Note the use of power supply decoupling and the RC Filter on the output.
The RC filter also prevents VOUT from oscillating on many sensors.

181065_0_Product_Manual - June 16, 2011 1:47 PM

Interfacing to an arbitrary sensor
Note the use of power supply decoupling and the RC Filter on the
output.	The	RC	filter	also	prevents	VOUT	from	oscillating	on	many	
sensors

Non Phidgets Sensors
In addition to Phidgets sensors, any sensor that returns a signal between 0 and 5 volts can be easily interfaced.
Here is a list of interesting sensors that can be used with the 1065. Note: these sensors are not “plug & play” like
the sensors manufactured by Phidgets.

Analog Sensors
Manufacturer Part Number Description
MSI Sensors FC21/FC22 Load cells - measure up to 100lbs of force

Humirel HTM2500VB Humidity sensors

Measurement Specialties MSP-300 Pressure sensors - ranges up to 10,000 PSI

Freescale Semiconductor MPXA/MPXH Gas Pressure Sensors

Allegro ACS7 series Current Sensors - ranges up to 200 Amps

Allegro A1300 series Linear	Hall	Effect	Sensors	-	to	detect	magnetic	fields

Analog TMP35 TMP36
TMP37

Temperature Sensor

Panasonic AMN series Motion Sensors

Honeywell FS01, FS03 Small, accurate Piezo-resistive load cells

AllSensors-Europe BARO-A-4V Barometric Pressure Sensor - 600 to 1,100 mbar

Note: Most of the above components can be bought at www.digikey.com
1

1

2

2

3

3

4

4

D D

C C

B B

A A

20pF

1K

1M

+V

ANALOG

GROUND

Phidget
Analog

Input x1

Detail of Analog Input

INPUT

5V PW R

1K

SAMPL ING SWITCH

ANALOG

GROUND

INPUT

5V PW R

Phidget
Analog

Input

4K

Sensing the value of a variable resistance sensor

FSR

In this case, an FSR (force sensitive resistor) is shown.

1K
ANALOG

GROUND

INPUT

5V PW R

Phidget
Analog

Input

Sensing the position of a potentiometer

ANALOG

GROUND

INPUT

5V PW R

Phidget
Analog

Input

Interfacing to an arbitrary sensor

GND3 VOUT2 VCC1

100nF

1K

100nF

Note the use of power supply decoupling and the RC Filter on the output.
The RC filter also prevents VOUT from oscillating on many sensors.

Here is an example of using the 1065 with a linear
actuator providing feedback through an integrated
potentiometer. The actuator’s position is fed back
through the analog input and can be used by the
software application.

191065_0_Product_Manual - June 16, 2011 1:47 PM

100nF

15K

15K

+5V +5V

INPUT

GROUND

INPUT

GROUND

USER

SW
IT

C
H

W iring a switch to a Digital Input

Phidget
 Digital
Input x1

APPLICATION

Monitoring the position of a Relay

K 1

FSR

Isolating a Digital Input with an Optocoupler

Phidget
Digital
Input

Closing switch causes digital input to report TRUE Detail of Digital Input

USER
APPLICATION

Relay contact causes Digital Input to report TRUE

Current through LED causes Digital Input to report TRUE

USER

Using an FSR as a switch

APPLICATION

FSR Resistance f alling below 3.75k Ohms causes Digital Input to go TRUE
FSR Resistance rising above 75k Ohms causes Digital Input to go FALSE
This design can be used with any variable resistance sensor - CDS Photocells.

Q1

Detecting an external Voltage with an NPN Transistor
Collector-Emitter Current > 270uA causes Digital Input to report TRUE
Collector-Emitter Current < 67uA guarantees Digital Input to report FALSE

Detecting an external Voltage with an N-Channel MOSFET

1K

R1

Drain-Source Current > 270uA causes Digital Input to report TRUE
Drain-Source Current < 67uA guarantees Digital Input to report TRUE
The resistor on the Gate is not required for it to function, but is a good idea.
Be sure not to exceed VGS of the mosfet.

Drain-Source Current > 270uA causes Digital Input to report TRUE
Drain-Source Current < 67uA guarantees Digital Input to report TRUE

Actual Voltage Required to switch is dependent on VGS required to turn on MOSFET

USER
APPLICATION

USER
APPLICATION

USER
APPLICATION

VS1

10K

R1

VS1

1K

R1

VS1

U1

OptoCoupler

Q1

INPUT

GROUND

Phidget
Digital
Input

INPUT

GROUND

Phidget
Digital
Input

INPUT

GROUND

Phidget
Digital
Input

INPUT

GROUND

Phidget
Digital
Input

INPUT

GROUND

Phidget
Digital
Input

100nF

15K

15K

+5V +5V

INPUT

GROUND

INPUT

GROUND

USER

SW
IT

C
H

W iring a switch to a Digital Input

Phidget
 Digital
Input x1

APPLICATION

Monitoring the position of a Relay

K 1

FSR

Isolating a Digital Input with an Optocoupler

Phidget
Digital
Input

Closing switch causes digital input to report TRUE Detail of Digital Input

USER
APPLICATION

Relay contact causes Digital Input to report TRUE

Current through LED causes Digital Input to report TRUE

USER

Using an FSR as a switch

APPLICATION

FSR Resistance f alling below 3.75k Ohms causes Digital Input to go TRUE
FSR Resistance rising above 75k Ohms causes Digital Input to go FALSE
This design can be used with any variable resistance sensor - CDS Photocells.

Q1

Detecting an external Voltage with an NPN Transistor
Collector-Emitter Current > 270uA causes Digital Input to report TRUE
Collector-Emitter Current < 67uA guarantees Digital Input to report FALSE

Detecting an external Voltage with an N-Channel MOSFET

1K

R1

Drain-Source Current > 270uA causes Digital Input to report TRUE
Drain-Source Current < 67uA guarantees Digital Input to report TRUE
The resistor on the Gate is not required for it to function, but is a good idea.
Be sure not to exceed VGS of the mosfet.

Drain-Source Current > 270uA causes Digital Input to report TRUE
Drain-Source Current < 67uA guarantees Digital Input to report TRUE

Actual Voltage Required to switch is dependent on VGS required to turn on MOSFET

USER
APPLICATION

USER
APPLICATION

USER
APPLICATION

VS1

10K

R1

VS1

1K

R1

VS1

U1

OptoCoupler

Q1

INPUT

GROUND

Phidget
Digital
Input

INPUT

GROUND

Phidget
Digital
Input

INPUT

GROUND

Phidget
Digital
Input

INPUT

GROUND

Phidget
Digital
Input

INPUT

GROUND

Phidget
Digital
Input

100nF

15K

15K

+5V +5V

INPUT

GROUND

INPUT

GROUND

USER

SW
IT

C
H

W iring a switch to a Digital Input

Phidget
 Digital
Input x1

APPLICATION

Monitoring the position of a Relay

K 1

FSR

Isolating a Digital Input with an Optocoupler

Phidget
Digital
Input

Closing switch causes digital input to report TRUE Detail of Digital Input

USER
APPLICATION

Relay contact causes Digital Input to report TRUE

Current through LED causes Digital Input to report TRUE

USER

Using an FSR as a switch

APPLICATION

FSR Resistance f alling below 3.75k Ohms causes Digital Input to go TRUE
FSR Resistance rising above 75k Ohms causes Digital Input to go FALSE
This design can be used with any variable resistance sensor - CDS Photocells.

Q1

Detecting an external Voltage with an NPN Transistor
Collector-Emitter Current > 270uA causes Digital Input to report TRUE
Collector-Emitter Current < 67uA guarantees Digital Input to report FALSE

Detecting an external Voltage with an N-Channel MOSFET

1K

R1

Drain-Source Current > 270uA causes Digital Input to report TRUE
Drain-Source Current < 67uA guarantees Digital Input to report TRUE
The resistor on the Gate is not required for it to function, but is a good idea.
Be sure not to exceed VGS of the mosfet.

Drain-Source Current > 270uA causes Digital Input to report TRUE
Drain-Source Current < 67uA guarantees Digital Input to report TRUE

Actual Voltage Required to switch is dependent on VGS required to turn on MOSFET

USER
APPLICATION

USER
APPLICATION

USER
APPLICATION

VS1

10K

R1

VS1

1K

R1

VS1

U1

OptoCoupler

Q1

INPUT

GROUND

Phidget
Digital
Input

INPUT

GROUND

Phidget
Digital
Input

INPUT

GROUND

Phidget
Digital
Input

INPUT

GROUND

Phidget
Digital
Input

INPUT

GROUND

Phidget
Digital
Input

Digital Inputs
Using the Digital Inputs
Here are some circuit diagrams that illustrate how to connect various devices to the digital inputs on your Phidget.

Wiring a switch to a Digital Input

Closing the switch causes the digital input to report TRUE.

Monitoring the position of a relay

The relay contact can be treated as a switch, and wired up similarly. When the
relay contact is closed, the Digital Input will report TRUE.

Detecting an external Voltage with an N-Channel MOSFET

A MOSFET can be used to detect the presence of an external voltage.
The external voltage will turn on the MOSFET, causing it to short the
Digital Input to Ground.

If the MOSFET is conducting > 280µA, the Digital Input is guaranteed
to report TRUE.

If the MOSFET is conducting < 190µA, the Digital Input is guaranteed
to report FALSE.

The voltage level required to turn on the MOSFET depends on the make
of of MOSFET you are using. Typical values are 2V-6V.

201065_0_Product_Manual - June 16, 2011 1:47 PM

100nF

15K

15K

+5V +5V

INPUT

GROUND

INPUT

GROUND

USER

SW
IT

C
H

W iring a switch to a Digital Input

Phidget
 Digital
Input x1

APPLICATION

Monitoring the position of a Relay

K 1

FSR

Isolating a Digital Input with an Optocoupler

Phidget
Digital
Input

Closing switch causes digital input to report TRUE Detail of Digital Input

USER
APPLICATION

Relay contact causes Digital Input to report TRUE

Current through LED causes Digital Input to report TRUE

USER

Using an FSR as a switch

APPLICATION

FSR Resistance f alling below 3.75k Ohms causes Digital Input to go TRUE
FSR Resistance rising above 75k Ohms causes Digital Input to go FALSE
This design can be used with any variable resistance sensor - CDS Photocells.

Q1

Detecting an external Voltage with an NPN Transistor
Collector-Emitter Current > 270uA causes Digital Input to report TRUE
Collector-Emitter Current < 67uA guarantees Digital Input to report FALSE

Detecting an external Voltage with an N-Channel MOSFET

1K

R1

Drain-Source Current > 270uA causes Digital Input to report TRUE
Drain-Source Current < 67uA guarantees Digital Input to report TRUE
The resistor on the Gate is not required for it to function, but is a good idea.
Be sure not to exceed VGS of the mosfet.

Drain-Source Current > 270uA causes Digital Input to report TRUE
Drain-Source Current < 67uA guarantees Digital Input to report TRUE

Actual Voltage Required to switch is dependent on VGS required to turn on MOSFET

USER
APPLICATION

USER
APPLICATION

USER
APPLICATION

VS1

10K

R1

VS1

1K

R1

VS1

U1

OptoCoupler

Q1

INPUT

GROUND

Phidget
Digital
Input

INPUT

GROUND

Phidget
Digital
Input

INPUT

GROUND

Phidget
Digital
Input

INPUT

GROUND

Phidget
Digital
Input

INPUT

GROUND

Phidget
Digital
Input

100nF

15K

15K

+5V +5V

INPUT

GROUND

INPUT

GROUND

USER

SW
IT

C
H

W iring a switch to a Digital Input

Phidget
 Digital
Input x1

APPLICATION

Monitoring the position of a Relay

K 1

FSR

Isolating a Digital Input with an Optocoupler

Phidget
Digital
Input

Closing switch causes digital input to report TRUE Detail of Digital Input

USER
APPLICATION

Relay contact causes Digital Input to report TRUE

Current through LED causes Digital Input to report TRUE

USER

Using an FSR as a switch

APPLICATION

FSR Resistance f alling below 3.75k Ohms causes Digital Input to go TRUE
FSR Resistance rising above 75k Ohms causes Digital Input to go FALSE
This design can be used with any variable resistance sensor - CDS Photocells.

Q1

Detecting an external Voltage with an NPN Transistor
Collector-Emitter Current > 270uA causes Digital Input to report TRUE
Collector-Emitter Current < 67uA guarantees Digital Input to report FALSE

Detecting an external Voltage with an N-Channel MOSFET

1K

R1

Drain-Source Current > 270uA causes Digital Input to report TRUE
Drain-Source Current < 67uA guarantees Digital Input to report TRUE
The resistor on the Gate is not required for it to function, but is a good idea.
Be sure not to exceed VGS of the mosfet.

Drain-Source Current > 270uA causes Digital Input to report TRUE
Drain-Source Current < 67uA guarantees Digital Input to report TRUE

Actual Voltage Required to switch is dependent on VGS required to turn on MOSFET

USER
APPLICATION

USER
APPLICATION

USER
APPLICATION

VS1

10K

R1

VS1

1K

R1

VS1

U1

OptoCoupler

Q1

INPUT

GROUND

Phidget
Digital
Input

INPUT

GROUND

Phidget
Digital
Input

INPUT

GROUND

Phidget
Digital
Input

INPUT

GROUND

Phidget
Digital
Input

INPUT

GROUND

Phidget
Digital
Input

100nF

15K

15K

+5V +5V

INPUT

GROUND

INPUT

GROUND

USER

SW
IT

C
H

W iring a switch to a Digital Input

Phidget
 Digital
Input x1

APPLICATION

Monitoring the position of a Relay

K 1

FSR

Isolating a Digital Input with an Optocoupler

Phidget
Digital
Input

Closing switch causes digital input to report TRUE Detail of Digital Input

USER
APPLICATION

Relay contact causes Digital Input to report TRUE

Current through LED causes Digital Input to report TRUE

USER

Using an FSR as a switch

APPLICATION

FSR Resistance f alling below 3.75k Ohms causes Digital Input to go TRUE
FSR Resistance rising above 75k Ohms causes Digital Input to go FALSE
This design can be used with any variable resistance sensor - CDS Photocells.

Q1

Detecting an external Voltage with an NPN Transistor
Collector-Emitter Current > 270uA causes Digital Input to report TRUE
Collector-Emitter Current < 67uA guarantees Digital Input to report FALSE

Detecting an external Voltage with an N-Channel MOSFET

1K

R1

Drain-Source Current > 270uA causes Digital Input to report TRUE
Drain-Source Current < 67uA guarantees Digital Input to report TRUE
The resistor on the Gate is not required for it to function, but is a good idea.
Be sure not to exceed VGS of the mosfet.

Drain-Source Current > 270uA causes Digital Input to report TRUE
Drain-Source Current < 67uA guarantees Digital Input to report TRUE

Actual Voltage Required to switch is dependent on VGS required to turn on MOSFET

USER
APPLICATION

USER
APPLICATION

USER
APPLICATION

VS1

10K

R1

VS1

1K

R1

VS1

U1

OptoCoupler

Q1

INPUT

GROUND

Phidget
Digital
Input

INPUT

GROUND

Phidget
Digital
Input

INPUT

GROUND

Phidget
Digital
Input

INPUT

GROUND

Phidget
Digital
Input

INPUT

GROUND

Phidget
Digital
Input

USER
APPLICATION

INPUT

GROUND

Phidget
Digital
Input

Q1

+10-30V

Connecting a 3-wire Capacitive or Inductive Proximity Switch

Proximity Switch

Isolating a Digital Input with an Optocoupler

When driving current through the LED, the Digital Input will
report TRUE. The amount of current required will depend
on the optocoupler used. Design to sink at least 280µA to
cause the digital input to report TRUE, and less than 190µA
to report FALSE.

Detecting an external Voltage with an NPN Transistor

This circuit can be used to measure if a battery is connected, or if 12V
(for example) is on a wire.

By designing to have Collector-Emitter current > 280µA, the digital
input will report TRUE.

Using a Capacitive or Inductive Proximity Switch

Capacitive proximity switches can detect the presence of nearby
non-metallic objects, whereas inductive proximity switches
can detect only the presence of metallic objects. To properly
interface one of these proximity switches to the digital inputs, a
3-wire proximity switch is required, as well as an external power
supply.

We have checked the following switch from Automation Direct
to verify that it works with the Digital Inputs. Similar capacitive
or inductive proximity switches from other manufacturers should
work just as well.

Manufacturer Web Page Capacitive Part No Inductive Part No

Automation Direct www.automationdirect.com CT1 Series AM1 Series

211065_0_Product_Manual - June 16, 2011 1:47 PM

100nF

15K

15K

+5V +5V

INPUT

GROUND

INPUT

GROUND

USER

SW
IT

C
H

W iring a switch to a Digital Input

Phidget
 Digital
Input x1

APPLICATION

Monitoring the position of a Relay

K 1

FSR

Isolating a Digital Input with an Optocoupler

Phidget
Digital
Input

Closing switch causes digital input to report TRUE Detail of Digital Input

USER
APPLICATION

Relay contact causes Digital Input to report TRUE

Current through LED causes Digital Input to report TRUE

USER

Using an FSR as a switch

APPLICATION

FSR Resistance f alling below 3.75k Ohms causes Digital Input to go TRUE
FSR Resistance rising above 75k Ohms causes Digital Input to go FALSE
This design can be used with any variable resistance sensor - CDS Photocells.

Q1

Detecting an external Voltage with an NPN Transistor
Collector-Emitter Current > 270uA causes Digital Input to report TRUE
Collector-Emitter Current < 67uA guarantees Digital Input to report FALSE

Detecting an external Voltage with an N-Channel MOSFET

1K

R1

Drain-Source Current > 270uA causes Digital Input to report TRUE
Drain-Source Current < 67uA guarantees Digital Input to report TRUE
The resistor on the Gate is not required for it to function, but is a good idea.
Be sure not to exceed VGS of the mosfet.

Drain-Source Current > 270uA causes Digital Input to report TRUE
Drain-Source Current < 67uA guarantees Digital Input to report TRUE

Actual Voltage Required to switch is dependent on VGS required to turn on MOSFET

USER
APPLICATION

USER
APPLICATION

USER
APPLICATION

VS1

10K

R1

VS1

1K

R1

VS1

U1

OptoCoupler

Q1

INPUT

GROUND

Phidget
Digital
Input

INPUT

GROUND

Phidget
Digital
Input

INPUT

GROUND

Phidget
Digital
Input

INPUT

GROUND

Phidget
Digital
Input

INPUT

GROUND

Phidget
Digital
Input

100nF

15K

15K

+5V +5V

INPUT

GROUND

INPUT

GROUND

USER

SW
IT

C
H

W iring a switch to a Digital Input

Phidget
 Digital
Input x1

APPLICATION

Monitoring the position of a Relay

K 1

FSR

Isolating a Digital Input with an Optocoupler

Phidget
Digital
Input

Closing switch causes digital input to report TRUE Detail of Digital Input

USER
APPLICATION

Relay contact causes Digital Input to report TRUE

Current through LED causes Digital Input to report TRUE

USER

Using an FSR as a switch

APPLICATION

FSR Resistance f alling below 3.75k Ohms causes Digital Input to go TRUE
FSR Resistance rising above 75k Ohms causes Digital Input to go FALSE
This design can be used with any variable resistance sensor - CDS Photocells.

Q1

Detecting an external Voltage with an NPN Transistor
Collector-Emitter Current > 270uA causes Digital Input to report TRUE
Collector-Emitter Current < 67uA guarantees Digital Input to report FALSE

Detecting an external Voltage with an N-Channel MOSFET

1K

R1

Drain-Source Current > 270uA causes Digital Input to report TRUE
Drain-Source Current < 67uA guarantees Digital Input to report TRUE
The resistor on the Gate is not required for it to function, but is a good idea.
Be sure not to exceed VGS of the mosfet.

Drain-Source Current > 270uA causes Digital Input to report TRUE
Drain-Source Current < 67uA guarantees Digital Input to report TRUE

Actual Voltage Required to switch is dependent on VGS required to turn on MOSFET

USER
APPLICATION

USER
APPLICATION

USER
APPLICATION

VS1

10K

R1

VS1

1K

R1

VS1

U1

OptoCoupler

Q1

INPUT

GROUND

Phidget
Digital
Input

INPUT

GROUND

Phidget
Digital
Input

INPUT

GROUND

Phidget
Digital
Input

INPUT

GROUND

Phidget
Digital
Input

INPUT

GROUND

Phidget
Digital
Input

Using an FSR or other variable resistor as a switch

The digital inputs can be easily wired to use many variable resistors as switches.

If the resistance falls below 2.8k Ohms, the Digital Input will go TRUE.

If the resistance rises above 11k Ohms, the Digital Input will go FALSE.

Functional Block Diagram

The digital inputs have a built in 15K pull-up resistor. By connecting
external circuitry, and forcing the input to Ground, the Digital Input
in software will read as TRUE. The default state is FALSE - when you
have nothing connected, or your circuitry (switch, etc) is not pulling the
input to ground.

Digital Input Hardware Filter
There	is	built-in	filtering	on	the	digital	input,	to	eliminate	false	triggering	from	electrical	noise.		The	digital	input	is	
first	RC	filtered	by	a	15K/100nF	node,	which	will	reject	noise	of	higher	frequency	than	1Khz.		This	filter	generally	
eliminates the need to shield the digital input from inductive and capacitive coupling likely to occur in wiring
harnesses.

Digital Input Sampling Characteristics
The state of the digital inputs are reported back to the PC periodically. During this sampling period, if a digital input
was true for greater than 4.0ms, the digital input is guaranteed to be reported as true in software. This makes the
digital input much more sensitive to reporting TRUE state, and makes it useful to watch for short events.

221065_0_Product_Manual - June 16, 2011 1:47 PM

Encoders
The 1065 can be used with a wide assortment of mechanical and optical encoders. The encoder should be of
quadrature output type, indicating that there will be two quadrature output channels (usually labeled A and B).
Some encoders have a third output channel to signal when the index pin (a reference point for zero position or a
complete revolution) has been reached - the 1065 does not use this signal.

The 1065 can time the duration between a group of quadrature changes. The time is returned in 1/3 millisecond.
This time value can be used to calculate velocity and acceleration.
The	maximum	rate	of	the	1065	Encoder	is	specified	at	500,000	counts	per	second.		In	your	application,	this	
number relates directly to the number of revolutions per second you wish to measure, and the number of counts
per	revolution	specified	for	your	encoder.		If	your	encoder	measures	1000	counts	per	revolution,	then	the	limit	on	
measurable revolutions per second is 500, or 30,000 RPM.

Quadrature Encoder Fundamentals
Quadrature encoders are common, using two output channels to dictate both a change and the direction of change.
In an encoder system, two parallel mechanical switches or optical slots are offset slightly. This way, as the slots
passs by the sensor, the staggered output indicates both the number of pulses that have occurred (the change in
position) as well as which output channel is leading the other (direction of change).

Choosing Encoders
Both mechanical and optical encoders are available, with optical encoders dominating at > 100 counts per second.
Review the data sheet for the encoder you are planning to use to ensure it is compatible with the 1065. Compatible
encoders should operate from the +5VDC power provided by the 1065, and use a single wire for the A and B
channels. Some types of encoders will use two wires (differential) for each channel - these are not compatible.
Compatible encoders are often advertised as being ‘single
ended’, and will have 4 or 5 connections.

Absolute encoders will not work with this device.

Mechanical encoders are effectively just two switches, and
often have a push button switch on the shaft. This push
button switch can be wired into a digital input on the 1065.
Mechanical encoders do not have to be connected to +5V.

Warning: The 1065 incorporates a 2.4 kOhm pull-up
resistor on the line from the encoder input connector. If
your encoder is mechanical, this pull-up resistor eliminates
the requirement to add your own external pull-up resistor.

Some optical encoders will have a simple photo-transistor / open-collector output.
The 2.4 kOhm pull-up resistor may have to be augmented with a stronger parallel
resistor if your optical encoder datasheet calls for it. Some open-collector outputs
will not be strong enough to pull this resistor to ground. These encoders are not
compatible with the 1065, and may only work initially, or not at all. If you have
any doubts, please contact us.

Most optical encoders have a push-pull output, and the pull-up resistor is
irrelevant, but weak enough not cause problems.

We have reviewed the following encoders, and found that they can be used with the 1065. This is not meant to be
a comprehensive list but should be used as examples of the type of encoders that can be used with the 1065.

231065_0_Product_Manual - June 16, 2011 1:47 PM

Connectors
Each Input uses a 3-pin, 0.100 inch pitch locking connector. The connectors are commonly available - refer to the

Table below for manufacturer part numbers.

Note: Most of the above components can be bought at www.digikey.com

Manufacturer Web Page Part Number

Grayhill www.Grayhill.com Series 63R, Series 61R Series 63Q TTL Output

US Digital (recommended) www.USDigital.com S4, S5, E2, E3, E4, E4P, etc.

Avago Technologies (Formerly Agilent) www.avagotech.com HEDS 5500

CUI Inc. www.cui.com AMT103-V

Manufacturer Part Number Description

Molex 50-57-9405 5 Position Cable Connector

Molex 16-02-0102 Wire Crimp Insert for Cable Connector

Molex 70543-0004 5 Position Vertical PCB Connector

Molex 70553-0004 5 Position Right-Angle PCB Connector (Gold)

Molex 70553-0039 5 Position Right-Angle PCB Connector (Tin)

Molex 15-91-2055 5 Position Right-Angle PCB Connector - Surface Mount

241065_0_Product_Manual - June 16, 2011 1:47 PM

Device Specifications
Characteristic Value

Motor Controller

Output Controller Update Rate 42 Updates per second

Response Time 30 milliseconds

Velocity Resolution ±8-bit (~0.39%)

Velocity Range ±100%

Acceleration Resolution 8-bit (~0.39%)

Acceleration Range 24.52 - 6250 %/s2

Acceleration Time Range (-100% to +100% velocity) 32 - 8160 milliseconds

Braking Resolution 8-bit (~0.39%)

Braking Range 0 - 100%

Motor PWM Frequency Varies with motor speed

Analog Input

Impedance 900K ohms

5V Reference Error Max 0.5%

Update Rate 125 samples/second

Digital Inputs

Pull-Up Resistance 15K ohms

Low Voltage (True) 0.8V Max

High Voltage (False) 2.1V Min

Maximum Voltage ±15V

Update Rate ~125 samples/second

Recommended Wire Size 16 - 26 AWG

Wire Stripping 5-6mm strip

Encoder

Maximum Count Rate 500,000 Counts per second

Internal Output Pull-Up Resistance 2.4k Ohms

Software Update Rate (typical) 8 milliseconds

USB Update Rate 125 samples/second

Time Resolution 1/3 ms

Board

Minimum Power Supply Voltage 9 VDC

Maximum Power Supply Voltage 28 VDC

Continuous Motor Current 5 A

Motor Overcurrent Trigger 8 A

Power Supply Overvoltage Trigger 40 V

USB-Power	Current	Specification 100 mA max

Device Quiescent Current Consumption 20 mA

Operating Temperature 0 - 70°C

Note: Current from USB supply is not available for motors.

251065_0_Product_Manual - June 16, 2011 1:47 PM

Product History
Date Board Revision Device Version Comment
June 2011 0 100 Product Release, requires phidget21 2.1.8

Support
Call the support desk at 1.403.282.7335 9:00 AM to 5:00 PM Mountain Time (US & Canada) - GMT-07:00

or

E-mail us at: support@phidgets.com

	Product Features
	Programming Environment
	Connection

	Getting Started
	Checking the Contents
	Connecting all the pieces
	Testing Using Windows 2000/XP/Vista/7
	Downloading the Phidgets drivers
	Running Phidgets Sample Program

	Testing Using Mac OS X
	If you are using Linux
	If you are using Windows Mobile/CE 5.0 or 6.0

	Programming a Phidget
	Architecture
	Libraries
	Programming Hints
	Networking Phidgets
	Documentation
	Programming Manual
	Getting Started Guides
	API Guides

	Code Samples
	API for the PhidgetMotorControl
	Properties
	Events

	Technical Section
	Brushed DC Motors
	Achieving rough control of DC Motors
	Back-EMF sensing
	Current Sensing

	Achieving precise control of DC Motors
	Control Loops - Overview
	PID Loop
	Kalman Filter

	Impact of latency on control loops.
	Over Power shutoff
	High Current Applications
	Feedback Example
	Analog Inputs
	Using the Analog Inputs with Sensors provided by Phidgets
	Using the Analog Inputs with your own sensors
	Mechanical
	Electrical
	Ratiometric Configuration
	Non-Ratiometric Configuration
	Factors that can affect Accuracy
	Connecting non-Phidget devices to the Analog Inputs
	Interfacing to an arbitrary sensor
	Non Phidgets Sensors

	Digital Inputs
	Using the Digital Inputs
	Functional Block Diagram
	Digital Input Hardware Filter
	Digital Input Sampling Characteristics

	Encoders
	Quadrature Encoder Fundamentals
	Choosing Encoders
	Connectors

	Device Specifications

	Product History
	Support

